Discretization of functionals involving the Monge–Ampère operator

被引:0
|
作者
Jean-David Benamou
Guillaume Carlier
Quentin Mérigot
Édouard Oudet
机构
[1] INRIA,Laboratoire Jean Kuntzmann
[2] Ceremade,undefined
[3] Université Paris-Dauphine,undefined
[4] Ceremade,undefined
[5] Université Paris-Dauphine,undefined
[6] CNRS,undefined
[7] Univ. Grenoble Alpes,undefined
来源
Numerische Mathematik | 2016年 / 134卷
关键词
49M25; 52B55;
D O I
暂无
中图分类号
学科分类号
摘要
Gradient flows in the Wasserstein space have become a powerful tool in the analysis of diffusion equations, following the seminal work of Jordan, Kinderlehrer and Otto (JKO). The numerical applications of this formulation have been limited by the difficulty to compute the Wasserstein distance in dimension ⩾\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqslant $$\end{document}2. One step of the JKO scheme is equivalent to a variational problem on the space of convex functions, which involves the Monge–Ampère operator. Convexity constraints are notably difficult to handle numerically, but in our setting the internal energy plays the role of a barrier for these constraints. This enables us to introduce a consistent discretization, which inherits convexity properties of the continuous variational problem. We show the effectiveness of our approach on nonlinear diffusion and crowd-motion models.
引用
收藏
页码:611 / 636
页数:25
相关论文
共 50 条