An Analysis of the M/G/1 Retrial Queue with Negative Arrivals using a Martingale Technique*

被引:0
作者
Berdjoudj L. [1 ]
Aissani D. [1 ]
机构
[1] University of Bejaia, Bejaia
关键词
Queue Length; Renewal Process; Busy Period; Retrial Queue; Single Server Queue;
D O I
10.1007/s10958-013-1628-7
中图分类号
学科分类号
摘要
We consider the M/G/1 retrial queue with negative arrivals. Using the technique of Baccelli and Makowski (1985, 1989) we define a martingale with respect to an embedded process. Using this, an analysis of the stationary behavior of the queue is possible. © 2013, Springer Science+Business Media New York.
引用
收藏
页码:11 / 14
页数:3
相关论文
共 9 条
[1]  
Artalejo J.R., A classified bibliography of research on retrial queues: progress in 1990–1999, TOP, 7, 2, pp. 187-211, (1999)
[2]  
Artalejo J.R., Gomez-Corral A., On a single server queue with negative arrivals and request repeated, J. Appl. Probab., 36, pp. 907-918, (1999)
[3]  
Baccelli F., Gomez-Corral A., Direct martingale arguments for stability: the M/G/1 case, Syst. Control Lett., 6, pp. 181-186, (1985)
[4]  
Baccelli F., Makowski A.M., Dynamic, transient and stationary behaviour of the M/GI/1 queue via martingals, Ann. Probab., 17, 4, pp. 1691-1699, (1989)
[5]  
Takacs L., Introduction to the Theory of Queues, (1962)
[6]  
Falin G.I., Templeton J.G.C., Retrial Queues, (1997)
[7]  
Gelenbe E., Production form queueing networks with negative and positive customers, J. Appl. Probab., 28, pp. 656-663, (1991)
[8]  
Neuveu J., Martingales `a Temps Discret, (1972)
[9]  
Roughan M., An application of martingales to queueing theory, Ph.D. Thesis, Department of Applied Mathematics, University of Adelaide, (1994)