Polynomial automorphisms and hypercyclic operators on spaces of analytic functions

被引:0
作者
Zoryana Novosad
Andriy Zagorodnyuk
机构
[1] Ukrainian Academy of Sciences,Institute for Applied Problems of Mechanics and Mathematics
来源
Archiv der Mathematik | 2007年 / 89卷
关键词
Primary: 47A16; Secondary: 46E10, 46E50; Hypercyclic operators; functional spaces; polynomial automorphisms; symmetric functions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider hypercyclic composition operators on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H({\mathbb{C}}^{n})$$ \end{document} which can be obtained from the translation operator using polynomial automorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{C}}^{n}$$ \end{document} . In particular we show that if CS is a hypercyclic operator for an affine automorphism S on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H({\mathbb{C}}^{n})$$ \end{document} , then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$S = \Theta \circ (I + b) \circ \Theta ^{-1} + a$$ \end{document} for some polynomial automorphism Θ and vectors a and b, where I is the identity operator. Finally, we prove the hypercyclicity of “symmetric translations” on a space of symmetric analytic functions on ℓ1.
引用
收藏
页码:157 / 166
页数:9
相关论文
empty
未找到相关数据