We consider hypercyclic composition operators on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$H({\mathbb{C}}^{n})$$
\end{document} which can be obtained from the translation operator using polynomial automorphisms of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathbb{C}}^{n}$$
\end{document} . In particular we show that if CS is a hypercyclic operator for an affine automorphism S on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$H({\mathbb{C}}^{n})$$
\end{document} , then \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$S = \Theta \circ (I + b) \circ \Theta ^{-1} + a$$
\end{document} for some polynomial automorphism Θ and vectors a and b, where I is the identity operator. Finally, we prove the hypercyclicity of “symmetric translations” on a space of symmetric analytic functions on ℓ1.