Degree formula for connective K-theory

被引:0
作者
K. Zainoulline
机构
[1] University of Ottawa,Dept. of Mathematics and Stat.
来源
Inventiones mathematicae | 2010年 / 179卷
关键词
Algebraic Variety; Abelian Variety; Chern Class; Structure Sheaf; Cohomology Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We use the degree formula for connective K-theory to study rational contractions of algebraic varieties. As an application we obtain a condition of rational incompressibility of algebraic varieties and a version of the index reduction formula. Examples include complete intersection, rationally connected varieties, twisted forms of abelian varieties and Calabi-Yau varieties
引用
收藏
页码:507 / 522
页数:15
相关论文
共 11 条
[1]  
Berhuy G.(2005)On the notion of canonicaldimension for algebraic group Adv. Math. 198 128-171
[2]  
Reichstein Z.(2004)Surfaces de del Pezzo sans point rationnel sur un corps de dimension cohomologique un J. Inst. Math. Jussieu 3 1-16
[3]  
Colliot-Thélène J.-L.(2007)Rational’nye povernosti i kanonicheskaya razmernoct’ gruppy PGL Algebra Anal. 19 159-178
[4]  
Madore D.(1998)Dimension cohomologique et points rationnels sur les courbes J. Algebra 203 349-354
[5]  
Colliot-Thélène J.-L.(2006)Canonical Adv. Math. 205 410-433
[6]  
Karpenko N.(2003)-dimension of algebraic groups J. Reine Angew. Math. 565 13-26
[7]  
Merkurjev A.(undefined)Steenrod operations and degree formulas undefined undefined undefined-undefined
[8]  
Ducros A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Karpenko N.(undefined)undefined undefined undefined undefined-undefined
[10]  
Merkurjev A.(undefined)undefined undefined undefined undefined-undefined