An efficient load balancing system using adaptive dragonfly algorithm in cloud computing

被引:0
作者
P. Neelima
A. Rama Mohan Reddy
机构
[1] Jawaharlal Nehru Technological University,Computer Science and Engineering
[2] Sri Venkateswara University,Department of Computer Science and Engineering
来源
Cluster Computing | 2020年 / 23卷
关键词
Task; Load balancing; Multi-objective; Enhanced dragonfly algorithm; Virtual machine; Scheduling;
D O I
暂无
中图分类号
学科分类号
摘要
With the rapid development of processing and storage technologies and the success of the Internet, computing resources have become cheaper, more powerful and more ubiquitously available than ever before. This technological trend has enabled the realization of a new computing model, called cloud computing. In cloud, scheduling is an important application. In cloud environments, load balancing task scheduling is an important problem that directly affects resource utilization. Undoubtedly, load balancing scheduling is a serious aspect that should be considered because of its significant impact on both the back end and the front end of the cloud research industry. Good resource utilization is achieved whenever an effective load balance is achieved in the cloud. But, load balancing in cloud computing is an NP-hard optimization problem. In order to accomplish this problem, a novel load balancing task scheduling algorithm in cloud using Adaptive Dragonfly algorithm (ADA) is proposed. The ADA is a combination of dragonfly algorithm and firefly algorithm. Moreover, to attain the better performance, multi-objective function is developed based on three parameters namely, completion time, processing costs and load. Finally, the performance of proposed methodology is evaluated in terms of different metrics namely, execution cost and execution time. The experimental results demonstrate that a proposed approach accomplishes better load balancing result compared to other approaches.
引用
收藏
页码:2891 / 2899
页数:8
相关论文
共 43 条
[1]  
Juarez F(2018)Dynamic energy-aware scheduling for parallel task-based application in cloud computing Future Gener. Comput. Syst. 78 257-271
[2]  
Ejarque J(2018)Energy-efficient tasks scheduling heuristics with multi-constraints in virtualized clouds J. Grid Comput. 16 459-475
[3]  
Badia RM(2018)An energy efficient ant colony system for virtual machine placement in cloud computing IEEE Trans. Evol. Comput. 22 113-128
[4]  
Zhang Y(2018)A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud computing environment Concurr. Comput.: Pract. Exp. 30 e4368-18
[5]  
Cheng X(2013)Multi-dimensional constrained cloud computing task scheduling mechanism based on genetic algorithm Int. J. Online Eng. (iJOE) 9 15-156
[6]  
Chen L(2016)An effective discrete artificial bee colony algorithm with idle time reduction techniques for two-sided assembly line balancing problem of type-II Comput. Ind. Eng. 97 146-754
[7]  
Shen H(2014)Task-based system load balancing in cloud computing using particle swarm optimization Int. J. Parallel Program. 42 739-2699
[8]  
Liu X-F(2015)A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing IEEE Access 3 2687-171
[9]  
Zhan Z-H(2016)AMTS: adaptive multi-objective task scheduling strategy in cloud computing China Commun. 13 162-783
[10]  
Deng JD(2018)Dynamic cloud task scheduling based on a two-stage strategy IEEE Trans. Autom. Sci. Eng. 15 772-15191