Wavelet–type transform associated with singular Laplace–Bessel differential operator
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Delta _\nu = \sum\limits_{k = 1}^n {\frac{{\partial ^2 }}
{{\partial x_k^2 }}} + \frac{{2\nu}}
{{x_n }}\frac{\partial }
{{\partial x_n }}$
\end{document} is introduced and the relevant Calderón–type reproducing formula is established. Representations of the generalized Bessel potentials
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(E - \Delta _\nu )^{ - \alpha /2} f,\quad (Re \alpha > 0)$
\end{document} and their inverses via the wavelet–type transform are obtained.