Wavelet-type Transform and Bessel Potentials Associated with the Generalized Translation

被引:0
作者
Ilham A. Aliev
Melih Eryigit
机构
[1] Akdeniz University,Science and Art Faculty, Dept. of Mathematics
来源
Integral Equations and Operator Theory | 2005年 / 51卷
关键词
65R10; 26A33; Wavelet–type transform; Calderón’s reproducing formula; Bessel potentials; generalized translation operator;
D O I
暂无
中图分类号
学科分类号
摘要
Wavelet–type transform associated with singular Laplace–Bessel differential operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _\nu = \sum\limits_{k = 1}^n {\frac{{\partial ^2 }} {{\partial x_k^2 }}} + \frac{{2\nu}} {{x_n }}\frac{\partial } {{\partial x_n }}$ \end{document} is introduced and the relevant Calderón–type reproducing formula is established. Representations of the generalized Bessel potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(E - \Delta _\nu )^{ - \alpha /2} f,\quad (Re \alpha > 0)$ \end{document} and their inverses via the wavelet–type transform are obtained.
引用
收藏
页码:303 / 317
页数:14
相关论文
empty
未找到相关数据