Confidence sets in nonparametric calibration of exponential Lévy models

被引:0
作者
Jakob Söhl
机构
[1] University of Cambridge,Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics
来源
Finance and Stochastics | 2014年 / 18卷
关键词
European option; Jump diffusion; Confidence sets; Asymptotic normality; Nonlinear inverse problem; 60G51; 62G15; 91G70; C14; G13;
D O I
暂无
中图分类号
学科分类号
摘要
Confidence intervals and joint confidence sets are constructed for the nonparametric calibration of exponential Lévy models based on prices of European options. To this end, we show joint asymptotic normality in the spectral calibration method for the estimators of the volatility, the drift, the jump intensity and the Lévy density at finitely many points.
引用
收藏
页码:617 / 649
页数:32
相关论文
共 33 条
[1]  
Belomestny D.(2010)Spectral estimation of the fractional order of a Lévy process Ann. Stat. 38 317-351
[2]  
Belomestny D.(2006)Spectral calibration of exponential Lévy models Finance Stoch. 10 449-474
[3]  
Reiß M.(2011)A jump-diffusion Libor model and its robust calibration Quant. Finance 11 529-546
[4]  
Belomestny D.(1996)Asymptotic equivalence of nonparametric regression and white noise Ann. Stat. 24 2384-2398
[5]  
Schoenmakers J.(1999)Option valuation using the fast Fourier transform J. Comput. Finance 2 61-73
[6]  
Brown L.D.(2006)Model uncertainty and its impact on the pricing of derivative instruments Math. Finance 16 519-547
[7]  
Low M.G.(2004)Non-parametric calibration of jump-diffusion option pricing models J. Comput. Finance 7 1-50
[8]  
Carr P.(2006)Retrieving Lévy processes from option prices: regularization of an ill-posed inverse problem SIAM J. Control Optim. 45 1-25
[9]  
Madan D.(2001)Nonparametric analysis of covariance Ann. Stat. 29 1361-1400
[10]  
Cont R.(1961)Risk, ambiguity, and the Savage axioms Q. J. Econ. 75 643-669