Generalized quasi-isometries on smooth Riemannian manifolds

被引:0
作者
E. S. Afanas’eva
机构
[1] National Academy of Sciences of Ukraine,Institute of Applied Mathematics and Mechanics
来源
Mathematical Notes | 2017年 / 102卷
关键词
Riemannian manifold; p-moduli; lower Q-homeomorphisms; finitely bi-Lipschitz homeomorphisms; boundary behavior;
D O I
暂无
中图分类号
学科分类号
摘要
The boundary behavior of finitely bi-Lipschitz mappings on smooth Riemannian manifolds is studied.
引用
收藏
页码:12 / 21
页数:9
相关论文
共 28 条
[1]  
Kovtonyuk D. A.(2008)Toward the theory of lower Ukr. Mat. Visn. 5 159-184
[2]  
Ryazanov V. I.(2012)-homeomorphisms Ann. Univ. Buchar. Math. Ser. 3 49-66
[3]  
Golberg A.(2011)Topological mappings of integrally bounded Ukr. Mat. Visn. 8 319-342
[4]  
Salimov R.(1975)-moduli Ark. !! “ArK.” in the original !! Mat. 13 131-144
[5]  
Afanasieva E. S.(1969)On mappings in the Orlicz–Sobolev classes on Riemannian manifolds Michigan Math. J. 16 43-51
[6]  
Ryazanov V. I.(2012)A Ann. Univ. Buchar. Math. Ser. 3 67-78
[7]  
Salimov R. R.(2013)-extremal length and Algebra Anal. 25 50-102
[8]  
Hesse J.(2014)-capacity equality Mat. Zametki 95 564-576
[9]  
Ziemer W. P.(2014)Extremal length and Algebra Anal. 26 143-171
[10]  
Kovtonyuk D. A.(2013)-capacity Algebra Anal. 25 101-124