Stability problem of Hyers-Ulam-Rassias for generalized forms of cubic functional equation

被引:0
作者
Dong Seung Kang
Hahng-Yun Chu
机构
[1] Dankook University,Department of Mathematics Education, College of Education
[2] Korea Institute for Advanced Study,School of Mathematics
来源
Acta Mathematica Sinica, English Series | 2008年 / 24卷
关键词
Hyers-Ulam-Rassias stability; cubic mapping; 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
Let n ≥ 2 be an integer number. In this paper, we investigate the generalized Hyers-Ulam-Rassias stability in Banach spaces and also Banach modules over a Banach algebra and a C*-algebra and the stability using the alternative fixed point of an n-dimensional cubic functional equation in Banach spaces: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f\left( {2\sum\limits_{j = 1}^{n - 1} {x_j + x_n } } \right) + f\left( {2\sum\limits_{j = 1}^{n - 1} {x_j - x_n } } \right) + 4\sum\limits_{j = 1}^{n - 1} {f(x_j ) = 16f} \left( {\sum\limits_{j = 1}^{n - 1} {x_j } } \right) + 2\sum\limits_{j = 1}^{n - 1} {(f(x_j + x_n ) + f(x_j - x_n ))} . $$\end{document}
引用
收藏
页码:491 / 502
页数:11
相关论文
共 23 条
[1]  
Hyers D. H.(1941)On the stability of the linear equation Proc. Nat. Acad. Sci. U.S.A. 27 222-224
[2]  
Rassias Th. M.(1978)On the stability of the linear mapping in Banach spaces Proc. Amer. Math. Soc. 72 297-300
[3]  
Gajda Z.(1991)On the stability of additive mappings Internat. J. Math. Math. Sci. 14 431-434
[4]  
Găvruta P.(1994)A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings J. Math. Anal. Appl. 184 431-436
[5]  
Skof F.(1983)Proprietà locali e approssimazione di operatori Rend. Semin. Mat. Fis. Milano 53 113-129
[6]  
Cholewa P. W.(1984)Remarks on the stability of functional equations Aequationes. Math. 27 76-86
[7]  
Czerwik S.(1992)On the stability of the quadratic mapping in normed spaces Abh. Math. Sem. Univ. Hamburg 62 59-64
[8]  
Jung S. M.(2006)On an Asymptotic Behavior of Exponential Functional equation Acta Mathematica Sinica, English Series 22 583-586
[9]  
Rassias Th. M.(2000)On the stability of functional equations in Banach spaces J. Math. Anal. Appl. 251 264-284
[10]  
Rassias Th. M.(1993)On the Hyers-Ulam stability of linear mappings J. Math. Anal. Appl. 173 325-338