A computational study of SrTiO3 thin film deposition: Morphology and growth modes

被引:0
作者
Wohlwend J.L. [1 ]
Boswell C.N. [1 ]
Phillpot S.R. [1 ]
Sinnott S.B. [2 ]
机构
[1] Department of Materials Science and Engineering, University of Florida, Gainesville
[2] University of California-Berkeley, Berkeley
基金
美国国家科学基金会;
关键词
D O I
10.1557/jmr.2009.0229
中图分类号
学科分类号
摘要
The growth of SrTiO3 (STO) thin films is examined using classical molecular dynamics simulations. First, a beam of alternating SrO and TiO2 molecules is deposited on the (001) surface of STO with incident kinetic energies of 0.1, 0.5, or 1.0 eV/atom. Second, deposition of alternating SrO and TiO2 monolayers, where both have incident energies of 1.0 eV/atom, is examined. The resulting thin film morphologies predicted by the simulations are compared to available experimental data. The simulations indicate the way in which the incident energy, surface termination, and beam composition influence the morphology of the thin films. On the whole, some layer-by-layer growth is predicted to occur on both SrO- and TiO 2-terminated STO for both types of deposition processes, with the alternating monolayer approach yielding thin films with structures that are much closer to that of bulk STO. © 2009 Materials Research Society.
引用
收藏
页码:1994 / 2000
页数:6
相关论文
共 24 条
  • [1] Zhou C., Newns D.M., Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors, J. Appl. Phys, 82, (1997)
  • [2] Petrov P., Carlsson E.F., Improved SrTiO<sub>3</sub> multilayers for microwave application: Growth and properties, J. Appl. Phys, 84, (1998)
  • [3] Treece R.E., Thompson J.B., Mueller C.H., Riykin T., Cromar M.W., Optimization of SrTiO<sub>3</sub> for applications in tunable resonant circuits, IEEE Trans. Appl. Supercond, 7, (1997)
  • [4] Roy D., Peng C.J., Krupanidhi S.B., Excimer laser ablated strontium titanate thin films for dynamic random-access memory applications, Appl. Phys. Lett, 60, (1992)
  • [5] Shirane G., Yamada Y., Lattice-dynamical study of the 110 K phase transition in SrTiO<sub>3</sub> , Phys. Rev, 177, 2, (1969)
  • [6] Piskunov S., Heifets E., Eglitis R.I., Borstel G., Bulk properties and electronic structure of SrTiO<sub>3</sub>, BaTiO<sub>3</sub>, PbTiO <sub>3</sub> perovs-kites: An ab initio HF/DFT study, Comput. Mater. Sci, 29, (2004)
  • [7] Hadjiivanov K.I., Klissurski D.G., Surface chemistry of tita-nia (anatase) and titania-supported catalysts, Chem. Soc. Rev, 25, (1996)
  • [8] Nakamura T., Inada H., Iiyama M., In situ surface characterization of SrTiO<sub>3</sub>(100) substrates and homoepitaxial SrTiO<sub>3</sub> thin films grown by molecular beam epitaxy and pulsed laser deposition, Appl. Surf. Sci, 130-132, (1998)
  • [9] Ong C.K., Wang S.J., In situ RHEED monitor of the growth of epitaxial anatase TiO<sub>2</sub> thin films, Appl. Surf. Sci, 185, (2001)
  • [10] Takahashi R., Matsumoto Y., Ohsawa T., Lippmaa M., Kawasaki M., Koinuma H., Growth dynamics of the epitaxial SrO film on SrTiO<sub>3</sub>(001), J. Cryst. Growth, 234, (2002)