Some inequalities for nonnegative tensors

被引:0
作者
Jun He
Ting-Zhu Huang
Guang-Hui Cheng
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2014卷
关键词
Perron vector; nonnegative tensor; spectral radius; eigenvalues;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a nonnegative tensor and x=(xi)>0 its Perron vector. We give lower bounds for xtm−1/∑xi2⋯xim and upper bounds for xsm−1/∑xi2⋯xim, where xs=max1≤i≤nxi and xt=min1≤i≤nxi.
引用
收藏
相关论文
共 23 条
[1]  
Chang KC(2011)Primitivity, the convergence of the NZQ method, and the largest eigenvalue for nonnegative tensors SIAM J. Matrix Anal. Appl 32 806-819
[2]  
Pearson K(2007)Eigenvalues and invariants of tensor J. Math. Anal. Appl 325 1363-1377
[3]  
Zhang T(2009)Finding the largest eigenvalue of a non-negative tensor SIAM J. Matrix Anal. Appl 31 1090-1099
[4]  
Qi L(2008)Perron-Frobenius theorem for nonnegative tensors Commun. Math. Sci 6 507-520
[5]  
Ng M(2009)On eigenvalue problems of real symmetric tensors J. Math. Anal. Appl 350 416-422
[6]  
Qi L(2010)An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor J. Comput. Appl. Math 235 286-292
[7]  
Zhou G(2013)Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor Linear Algebra Appl 438 959-968
[8]  
Chang KC(2005)Eigenvalues of a real supersymmetric tensor J. Symb. Comput 40 1302-1324
[9]  
Zhang T(2010)Further results for Perron-Frobenius theorem for nonnegative tensors SIAM J. Matrix Anal. Appl 31 2517-2530
[10]  
Chang KC(2011)Further results for Perron-Frobenius theorem for nonnegative tensors II SIAM J. Matrix Anal. Appl 32 1236-1250