Unitarity methods for Mellin moments of Drell-Yan cross sections

被引:0
作者
Domenico Bonocore
Eric Laenen
Robbert Rietkerk
机构
[1] Nikhef Theory Group,Institute for Theoretical Physics Amsterdam
[2] University of Amsterdam,Institute for Theoretical Physics
[3] Utrecht University,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
NLO Computations; QCD Phenomenology;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a method for computing Mellin moments of single inclusive cross sections such as Drell-Yan production directly from forward scattering diagrams, by invoking unitarity in the form of cutting equations. We provide a diagram-independent prescription for eliminating contributions from unwanted cuts at the level of an expansion in the reciprocal ω = 1/z variable. The modified sum over powers of ω produces the result from physical cuts only, with the nth coefficient precisely equal to the nth Mellin moment of the cross section. We demonstrate and validate our method for representative one- and two-loop diagrams.
引用
收藏
相关论文
共 80 条
  • [1] Berger CF(2010)Multi-parton scattering amplitudes via on-shell methods Ann. Rev. Nucl. Part. Sci. 60 181-undefined
  • [2] Forde D(1994)The next next-to-leading QCD approximation for nonsinglet moments of deep inelastic structure functions Nucl. Phys. B 427 41-undefined
  • [3] Larin SA(2009)( Nucl. Phys. B 820 417-undefined
  • [4] van Ritbergen T(2009)) Phys. Rev. D 80 094010-undefined
  • [5] Vermaseren JAM(2014) ≫ Eur. Phys. J. C 74 3033-undefined
  • [6] Bierenbaum I(2013)( Nucl. Phys. B 866 196-undefined
  • [7] Blumlein J(2011)) Nucl. Phys. B 844 26-undefined
  • [8] Klein S(2014)( Nucl. Phys. B 885 280-undefined
  • [9] Blumlein J(2012)) Nucl. Phys. B 864 52-undefined
  • [10] Klein S(2014) ≫ Nucl. Phys. B 885 409-undefined