Homoclinic Orbits and Entropy for Three-Dimensional Flows

被引:0
作者
A. M. Lopez
R. J. Metzger
C. A. Morales
机构
[1] Universidade Federal Rural Do Rio de Janeiro,Instituto de Ciencias Exatas (ICE)
[2] Universidad Nacional de Ingeniería,Instituto de Matemática Y Ciencias Afines (IMCA)
[3] Universidade Federal Do Rio de Janeiro,Instituto de Matemática
来源
Journal of Dynamics and Differential Equations | 2018年 / 30卷
关键词
Hyperbolic ergodic measure; Lyapunov exponents; Flow; Primary 37D25; Secondary 37C40;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} three-dimensional flow with positive topological entropy can be C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} approximated by flows with homoclinic orbits.
引用
收藏
页码:799 / 805
页数:6
相关论文
共 20 条
[1]  
Abdenur F(2011)Nonuniform hyperbolicity for Israel J. Math. 183 1-60
[2]  
Bonatti C(1975)-generic diffeomorphisms Invent. Math. 29 181-202
[3]  
Crovisier S(2011)The ergodic theory of Axiom A flows Adv. Math. 226 673-726
[4]  
Bowen R(2002)Partial hyperbolicity far from homoclinic bifurcations Nonlinearity 15 841-848
[5]  
Ruelle D(1980)Horseshoe and entropy for Inst. Hautes Études Sci. Publ. Math. 51 137-173
[6]  
Crovisier S(2005) surface diffeomorphisms Discrete Contin. Dyn. Syst. 13 239-269
[7]  
Gan S(1971)Lyapunov exponents, entropy and periodic orbits for diffeomorphisms Compos. Math. 23 115-122
[8]  
Katok A(2011)Robustly transitive singular sets via approach of an extended linear Poincaré flow Commun. Math. Phys. 305 1-21
[9]  
Li M(2014)Ergodic elements of ergodic actions J. Mod. Dyn. 8 191-219
[10]  
Gan S(1985)Oseledets regularity functions for Anosov flows Ergod. Theory Dyn. Syst. 5 145-161