Noether symmetries in Gauss–Bonnet-teleparallel cosmology

被引:0
作者
Salvatore Capozziello
Mariafelicia De Laurentis
Konstantinos F. Dialektopoulos
机构
[1] Universita’ di Napoli“Federico II”,Dipartimento di Fisica “E. Pancini”
[2] Complesso Universitario di Monte S. Angelo,Institute for Theoretical Physics
[3] INFN Sezione di Napoli,undefined
[4] Complesso Universitario di Monte S. Angelo,undefined
[5] Gran Sasso Science Institute (INFN),undefined
[6] Tomsk State Pedagogical University,undefined
[7] Goethe University,undefined
[8] Laboratory of Theoretical Cosmology,undefined
[9] Tomsk State University of Control Systems and Radioelectronics (TUSUR),undefined
来源
The European Physical Journal C | 2016年 / 76卷
关键词
Bonnet; Curvature Invariant; Cosmological Solution; Torsion Tensor; Teleparallel Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
A generalized teleparallel cosmological model, f(TG,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T_\mathcal {G},T)$$\end{document}, containing the torsion scalar T and the teleparallel counterpart of the Gauss–Bonnet topological invariant TG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathcal {G}}$$\end{document}, is studied in the framework of the Noether symmetry approach. As f(G,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\mathcal {G}, R)$$\end{document} gravity, where G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} is the Gauss–Bonnet topological invariant and R is the Ricci curvature scalar, exhausts all the curvature information that one can construct from the Riemann tensor, in the same way, f(TG,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T_\mathcal {G},T)$$\end{document} contains all the possible information directly related to the torsion tensor. In this paper, we discuss how the Noether symmetry approach allows one to fix the form of the function f(TG,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T_\mathcal {G},T)$$\end{document} and to derive exact cosmological solutions.
引用
收藏
相关论文
共 114 条
  • [1] Cai Y(2016)undefined Rep. Prog. Phys. 79 106901-1893
  • [2] Capozziello S(2011)undefined Phys. Rep. 509 167-undefined
  • [3] De Laurentis M(2011)undefined Phys. Rep. 505 59-undefined
  • [4] Saridakis EN(2012)undefined Ann. der Phys. 524 545-undefined
  • [5] Capozziello S(1978)undefined Gen. Relativ. Gravity 9 353-undefined
  • [6] De Laurentis M(2009)undefined Class. Quantum Gravity 26 085019-undefined
  • [7] Nojiri S(1990)undefined Class. Quantum Gravity 7 893-undefined
  • [8] Odintsov SD(2000)undefined Gen. Relativ. Gravity 32 295-undefined
  • [9] Capozziello S(2008)undefined Phys. Scr. 78 065010-undefined
  • [10] De Laurentis M(2013)undefined Phys. Rev. D 88 103526-undefined