Orders in Uniserial Rings

被引:0
作者
A. A. Tuganbaev
机构
[1] Moscow Power Engineering Institute (Technological University),
来源
Mathematical Notes | 2003年 / 74卷
关键词
uniserial ring; distributive ring; right order;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a ring, and let T(A) and N(A) be the set of all the regular elements of A and the set of all nonregular elements of A, respectively. It is proved that A is a right order in a right uniserial ring if and only if the set of all regular elements of A is a left ideal in the multiplicative semigroup A and for any two elements a1 and a2 of A, either there exist two elements b1 ∈ A and t1 ∈ T(A) with a1b1 = a2t1 or there exist two elements b2∈ A and t2∈ T(A) with a2b2 = a1t2. A right distributive ring A is a right order in a right uniserial ring if and only if the set N(A) is a left ideal of A. If A is a right distributive ring such that all its right divisors of zero are contained in the Jacobson radical J(A) of A, then A is a right order in a right uniserial ring.
引用
收藏
页码:874 / 882
页数:8
相关论文
共 4 条
[1]  
Dubrovin N. I.(1980)Uniserial domains Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 1 51-54
[2]  
Dubrovin N. I.(1982)On uniserial rings Uspekhi Mat. Nauk [Russian Math. Surveys] 4 139-140
[3]  
Stephenson W.(1974)Modules whose lattice of submodules is distributive Proc. London Math. Soc. 28 291-310
[4]  
Menzel W.(1960)Uber den Untergruppenverband einer Abelschen Operatorgruppe. Teil II. Distributive und M-Verbande von Untergruppen einer Abelschen Operatorgruppe Math. Z. 74 52-65