A kind of sharp Wirtinger inequality

被引:0
作者
Guiqiao Xu
Zehong Liu
Wanting Lu
机构
[1] Tianjin Normal University,College of Mathematical Science
来源
Journal of Inequalities and Applications | / 2019卷
关键词
Birkhoff interpolation; -norm; Eigenvalue; Wirtinger inequality; 41A44; 41A80;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we give a kind of sharp Wirtinger inequality ∥f∥p≤Cr,p,q∥f(r)∥qfor all 1≤p,q≤∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Vert f \Vert _{p}\le C_{r,p,q} \bigl\Vert f^{(r)} \bigr\Vert _{q} \quad \text{for all } 1\le p,q\le \infty , $$\end{document} where f is defined on [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,1]$\end{document} and satisfies f(k1)(0)=f(k2)(0)=⋯=f(ks)(0)=f(ms+1)(1)=⋯=f(mr)(1)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f^{(k_{1})}(0)=f^{(k _{2})}(0)=\cdots =f^{(k_{s})}(0)=f^{(m_{s+1})}(1)=\cdots =f^{(m_{r})}(1)=0$\end{document} with 0≤k1<k2<⋯<ks≤r−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\le k_{1}< k_{2}<\cdots <k_{s}\le r-1$\end{document} and 0≤ms+1<ms+2<⋯<mr≤r−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\le m_{s+1}< m_{s+2}< \cdots <m_{r}\le r-1$\end{document}. First, based on the Birkhoff interpolation, we refer the computation of Cr,p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{r,p,q}$\end{document} to the norm of an integral-type operator. Second, we refer the values of Cr,1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{r,1,1}$\end{document} and Cr,∞,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{r,\infty ,\infty }$\end{document} to explicit integral expressions and the value of Cr,2,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{r,2,2}$\end{document} to the computation of the maximal eigenvalue of a Hilbert–Schmidt operator. Finally, we give three examples to show our method.
引用
收藏
相关论文
共 27 条
[1]  
Schmidt E.(1940)Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet Math. Ann. 117 301-326
[2]  
Agarwal R.P.(1995)Remarks on the generalizations of Opial’s inequality J. Math. Anal. Appl. 190 559-577
[3]  
Pang P.Y.H.(2009)A generalized Wirtinger’s inequality with applications to a class of ordinary differential equations J. Inequal. Appl. 2009 209-218
[4]  
Chen R.(2010)A sharp weighted Wirtinger inequality and some related functional spaces Bull. Belg. Math. Soc. Simon Stevin 17 1389-1392
[5]  
Zhang D.F.(2011)On an integral inequality of the Wirtinger type Appl. Math. Lett. 24 847-853
[6]  
Giova R.(2004)Lyapunov and Wirtinger inequalities Appl. Math. Lett. 17 102-108
[7]  
Ricciardi T.(2010)Applications of Wirtinger inequalities on the distribution of zeros of the Riemann Zeta-function J. Inequal. Appl. 2010 2860-2866
[8]  
Jaros J.(2012)Wirtinger’s inequality and Lyapunov-based sampled-data stabilization Automatica 48 484-491
[9]  
Lee C.F.(2013)Wirtinger-based integral inequality: application to time-delay systems Automatica 49 117-135
[10]  
Chin C.(1978)Wirtinger’s inequality SIAM J. Math. Anal. 9 25-49