Quadratic equations over finite fields and class numbers of real quadratic fields

被引:0
作者
Takashi Agoh
Toshiaki Shoji
机构
[1] Science University of Tokyo,Department of Mathematics
来源
Monatshefte für Mathematik | 1998年 / 125卷
关键词
05A19; 05E15; 11R04; 11R11; 11R29; 20B30; Quadratic forms over finite fields; Weyl groups; hyperplane complements; partitions; combinatorial identities; class numbers; real quadratic fields;
D O I
暂无
中图分类号
学科分类号
摘要
Letp be an odd prime and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}_p $$ \end{document} the finite field withp elements. In the present paper we shall investigate the number of points of certain quadratic hypersurfaces in the vector space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}_p^n $$ \end{document} and derive explicit formulas for them. In addition, we shall show that the class number of the real quadratic field\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Q}(\sqrt p )$$ \end{document} (wherep≡1 (mod 4)) over the field ℚ of rational numbers can be expressed by means of these formulas.
引用
收藏
页码:279 / 292
页数:13
相关论文
共 11 条
[1]  
Agoh T(1989)A note on unit and class number of real quadratic fields Acta Math Sinica (NS) 5 281-288
[2]  
Ankeny NC(1952)The class number of real quadratic fields Ann Math 56 479-493
[3]  
Artin E(1962)A further note on the class number of real quadratic fields Acta Arith 7 271-272
[4]  
Chowla S(1994)The number of solutions of a certain quadratic congruence related to the class number of Proc Amer Math Soc 117 1-3
[5]  
Ankeny NC(1994)Upper bounds for class number of real quadratic fields Acta Arith 68 141-144
[6]  
Chowla S(1980)Unitary reflection groups and cohomology Invent Math 59 77-94
[7]  
Le M-H(1963)Invariants of finite reflection groups Nagoya Math J 22 57-64
[8]  
Le M-H(undefined)undefined undefined undefined undefined-undefined
[9]  
Orlik P(undefined)undefined undefined undefined undefined-undefined
[10]  
Solomon L(undefined)undefined undefined undefined undefined-undefined