Gain of regularity for semilinear Schrödinger equations

被引:0
|
作者
Hiroyuki Chihara
机构
[1] Department of Mathematical Sciences,
[2] Shinshu University,undefined
[3] Matsumoto 390-8621,undefined
[4] Japan (e-mail: chihara@math.shinshu-u.ac.jp) ,undefined
来源
Mathematische Annalen | 1999年 / 315卷
关键词
Mathematics Subject Classification (1991):35Q55, 35B65, 35G25, 35S05;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss local existence and gain of regularity for semilinear Schrödinger equations which generally cause loss of derivatives. We prove our results by advanced energy estimates. More precisely, block diagonalization and Doi's transformation, together with symbol smoothing for pseudodifferential operators with nonsmooth coefficients, apply to systems of Schrödinger-type equations. In particular, the sharp Gårding inequality for pseudodifferential operators whose coefficients are twice continuously differentiable, plays a crucial role in our proof.
引用
收藏
页码:529 / 567
页数:38
相关论文
共 50 条
  • [41] Semilinear Schrödinger equations with Hardy potentials involving the distance to a boundary submanifold and gradient source nonlinearities
    Gkikas, Konstantinos T.
    Paschalis, Miltiadis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (01):
  • [42] The direct and inverse scattering problem for the semilinear Schrödinger equation
    Takashi Furuya
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [43] A Matrix Schrödinger Approach to Focusing Nonlinear Schrödinger Equations with Nonvanishing Boundary Conditions
    Francesco Demontis
    Cornelis van der Mee
    Journal of Nonlinear Science, 2022, 32
  • [44] LONG-TIME ERROR BOUNDS OF LOW-REGULARITY INTEGRATORS FOR NONLINEAR SCHRÓDINGER EQUATIONS
    Feng, Yue
    Maierhofer, Georg
    Schratz, Katharina
    MATHEMATICS OF COMPUTATION, 2024, 93 (348) : 1569 - 1598
  • [45] Bifurcation and regularity analysis of the Schrödinger-Poisson equation
    Pucci, Patrizia
    Wang, Linlin
    Zhang, Binlin
    NONLINEARITY, 2024, 37 (03)
  • [46] Global smooth solutions for semilinear Schrödinger equations with boundary feedback on 2-dimensional Riemannian manifolds
    Li Deng
    Pengfei Yao
    Journal of Systems Science and Complexity, 2009, 22 : 749 - 776
  • [47] Lipschitz spaces adapted to Schrödinger operators and regularity properties
    Marta De León-Contreras
    José L. Torrea
    Revista Matemática Complutense, 2021, 34 : 357 - 388
  • [48] Observability for Schrödinger equations with quadratic Hamiltonians
    Waters, Alden
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (02):
  • [49] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [50] Schrödinger equations on locally symmetric spaces
    A. Fotiadis
    N. Mandouvalos
    M. Marias
    Mathematische Annalen, 2018, 371 : 1351 - 1374