Mild and strong solutions to few types of fractional order nonlinear equations with periodic boundary conditions

被引:0
作者
Mohamed A. E. Herzallah
机构
[1] Zagazig University,Faculty of Science
[2] Majmaah University,College of Science in Zulfi
来源
Indian Journal of Pure and Applied Mathematics | 2012年 / 43卷
关键词
Mild solution; strong solution; fractional derivative; boundary value problem; Schaufer fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the two fractional periodic boundary value problems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0^C D_{0 + }^\alpha u\left( t \right) - \lambda u\left( t \right) = f\left( {t,u\left( t \right)} \right), u\left( 0 \right) = u\left( 1 \right), 0 < \alpha < 1,$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0^C D_{0 + }^\beta u\left( t \right) - \lambda u\left( t \right) = f\left( {t,u\left( t \right)} \right), u\left( 0 \right) = u\left( 1 \right),u'\left( 0 \right) = 0 1 < \beta < 2,$$\end{document} will be studied where 0CDtα is the ordinary Caputo fractional derivative and λ ∈ ℝ −{0}. Under some suitable assumptions on the function f, the existence of at least one mild solution will be proved. Under some conditions, the uniqueness of this mild solution will be proved to both problems. Finally, these mild solutions will be strong solutions under certain conditions.
引用
收藏
页码:619 / 635
页数:16
相关论文
共 25 条
[21]  
Chen Y.(undefined)undefined undefined undefined undefined-undefined
[22]  
Tian Y.(undefined)undefined undefined undefined undefined-undefined
[23]  
Bai Z.(undefined)undefined undefined undefined undefined-undefined
[24]  
Wu J.(undefined)undefined undefined undefined undefined-undefined
[25]  
Liu Y.(undefined)undefined undefined undefined undefined-undefined