Mild and strong solutions to few types of fractional order nonlinear equations with periodic boundary conditions

被引:0
作者
Mohamed A. E. Herzallah
机构
[1] Zagazig University,Faculty of Science
[2] Majmaah University,College of Science in Zulfi
来源
Indian Journal of Pure and Applied Mathematics | 2012年 / 43卷
关键词
Mild solution; strong solution; fractional derivative; boundary value problem; Schaufer fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the two fractional periodic boundary value problems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0^C D_{0 + }^\alpha u\left( t \right) - \lambda u\left( t \right) = f\left( {t,u\left( t \right)} \right), u\left( 0 \right) = u\left( 1 \right), 0 < \alpha < 1,$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_0^C D_{0 + }^\beta u\left( t \right) - \lambda u\left( t \right) = f\left( {t,u\left( t \right)} \right), u\left( 0 \right) = u\left( 1 \right),u'\left( 0 \right) = 0 1 < \beta < 2,$$\end{document} will be studied where 0CDtα is the ordinary Caputo fractional derivative and λ ∈ ℝ −{0}. Under some suitable assumptions on the function f, the existence of at least one mild solution will be proved. Under some conditions, the uniqueness of this mild solution will be proved to both problems. Finally, these mild solutions will be strong solutions under certain conditions.
引用
收藏
页码:619 / 635
页数:16
相关论文
共 25 条
[1]  
Bai C.(2008)Triple positive solutions for a boundary value problem of nonlinear fractional differential equation Electron. J. Qual. Theory Differ. Equ. 24 1-10
[2]  
Bai Z.(2005)Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 495-505
[3]  
Lü H.(2009)Boundary value problems for differential equations with fractional order and nonlocal conditions Nonlinear Anal. 71 2391-2396
[4]  
Benchohra M.(2004)Continuation and maximal regularity of fractional-order evolution equation J. Math. Anal. Appl. 296 340-350
[5]  
Hamani S.(2005)Continuation and maximal regularity of an arbitrary (fractional) order evolutionary integro-differential equation Appl. Anal. 84 1151-1164
[6]  
Ntouyas S. K.(2010)Nontrivial solutins for a nonlinear multi-point boundary value problem of fractional order Comput. Math. Appl. 59 3438-3443
[7]  
El-Sayed A. M. A.(2009)Positive solutions for nonlinear singular third order boundary value problem Commun. Nonlinear. Science Num. Simu. 14 424-429
[8]  
Herzallah M. A. E.(2010)On the fractional-order Diffusion-Wave process Rom. J. Phys. 55 274-284
[9]  
El-Sayed A. M. A.(2004)Fractional calculus in bioengineering, Parts 13 Crit. Rev. Biomed. Eng. 32 1-377
[10]  
Herzallah M. A. E.(2009)A Cauchy problem for some fractional abstract differential equation with nonlocal conditions Nonlinear Anal. 70 1873-1876