A family of exact solutions of Einstein-Maxwell field equations in isotropic coordinates: an application to optimization of quark star mass

被引:0
作者
Neeraj Pant
N. Pradhan
Mohammad Hassan Murad
机构
[1] National Defence Academy,Mathematics Department
[2] National Defence Academy,Physics Department
[3] Daffodil International University,Department of Natural Sciences
来源
Astrophysics and Space Science | 2014年 / 352卷
关键词
Isotropic coordinates; General relativity; Reissner-Nordström; Fluid ball;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we have obtained a class of charged super dense star models, starting with a static spherically symmetric metric in isotropic coordinates for perfect fluid by considering Hajj-Boutros (in J. Math. Phys. 27:1363, 1986) type metric potential and a specific choice of electrical intensity which involves a parameter K. The resulting solutions represent charged fluid spheres joining smoothly with the Reissner-Nordstrom metric at the pressure free interface. The solutions so obtained are utilized to construct the models for super-dense star like neutron stars (ρb=2 and 2.7×1014 g/cm3) and Quark stars (ρb=4.6888×1014 g/cm3). Our solution is well behaved for all values of n satisfying the inequalities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4 < n \le4(4 + \sqrt{2} )$\end{document} and K satisfying the inequalities 0≤K≤0.24988, depending upon the value of n. Corresponding to n=4.001 and K=0.24988, we observe that the maximum mass of quark star M=2.335M⊙ and radius R=10.04 km. Further, this maximum mass limit of quark star is in the order of maximum mass of stable Strange Quark Star established by Dong et al. (in arXiv:1207.0429v3, 2013). The robustness of our results is that the models are alike with the recent discoveries.
引用
收藏
页码:135 / 141
页数:6
相关论文
共 38 条
[1]  
Bijalwan N.(2011)undefined Astrophys. Space Sci. 336 485-378
[2]  
Bonnor W.B.(1965)undefined Mon. Not. R. Astron. Soc. 137 239-L19
[3]  
Brecher K.(1976)undefined Nature 259 377-315
[4]  
Caporaso G.(1975)undefined Phys. Rev. C 12 2033-undefined
[5]  
Canuto V.(2011)undefined Int. J. Mod. Phys. D 20 1675-undefined
[6]  
Lodenquai J.(1995)undefined Mon. Not. R. Astron. Soc. 277 L17-undefined
[7]  
Das B.(2013)undefined Int. J. Theor. Phys. 334 155-undefined
[8]  
de Felice F.(2013)undefined Mon. Not. R. Astron. Soc. 27 1363-undefined
[9]  
Yu Y.(2011)undefined Astrophys. Space Sci. 65 1835-undefined
[10]  
Fang J.(1986)undefined J. Math. Phys. 44 481-undefined