Kripke Semantics for Intuitionistic Łukasiewicz Logic

被引:0
作者
A. Lewis-Smith
P. Oliva
E. Robinson
机构
[1] Queen Mary University of London,School of Electronic Engineering and Computer Science
来源
Studia Logica | 2021年 / 109卷
关键词
Łukasiewicz logic; Intuitionistic Łukasiewicz logic; Kripke semantics; GBL algebras;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a generalization of the Kripke semantics of intuitionistic logic IL appropriate for intuitionistic Łukasiewicz logicIŁL —a logic in the intersection between IL and (classical) Łukasiewicz logic. This generalised Kripke semantics is based on the poset sum construction, used in Bova and Montagna (Theoret Comput Sci 410(12):1143–1158, 2009). to show the decidability (and PSPACE completeness) of the quasiequational theory of commutative, integral and bounded GBL algebras. The main idea is that w⊩ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w \Vdash \psi $$\end{document}—which for ILis a relation between worlds w and formulas ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}, and can be seen as a function taking values in the booleans (w⊩ψ)∈B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(w \Vdash \psi ) \in {{\mathbb {B}}}$$\end{document}—becomes a function taking values in the unit interval (w⊩ψ)∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(w \Vdash \psi ) \in [0,1]$$\end{document}. An appropriate monotonicity restriction (which we call sloping functions) needs to be put on such functions in order to ensure soundness and completeness of the semantics.
引用
收藏
页码:313 / 339
页数:26
相关论文
共 11 条
  • [1] Bova S(2009)The consequence relation in the logic of commutative GBL-algebras is PSPACE-complete Theoretical Computer Science 410 1143-1158
  • [2] Montagna F(2000)Basic fuzzy logic is the logic of continuous t-norms and their residua Soft Computing 4 106-112
  • [3] Cignoli R(1998)Basic fuzzy logic and BL-algebras Soft Computing 2 124-128
  • [4] Esteva F(2006)On the structure of generalized BL-algebras Algebra Universalis 55 227-238
  • [5] Godo L(2005)Proof analysis in modal logic Journal of Philosophical Logic 34 507-544
  • [6] Torrens A(2003)Tableaux for Łukasiewicz infinite-valued logic Studia Logica 73 81-111
  • [7] Hájek P(undefined)undefined undefined undefined undefined-undefined
  • [8] Jipsen P(undefined)undefined undefined undefined undefined-undefined
  • [9] Montagna F(undefined)undefined undefined undefined undefined-undefined
  • [10] Negri S.(undefined)undefined undefined undefined undefined-undefined