Measures of Maximal Dimension for Hyperbolic Diffeomorphisms

被引:3
作者
Luis Barreira
Christian Wolf
机构
[1] Instituto Superior Técnico,Departamento de Matemática
[2] Wichita State University,Department of Mathematics
来源
Communications in Mathematical Physics | 2003年 / 239卷
关键词
Entropy; Maximal Entropy; Hausdorff Dimension; Maximal Dimension; Crucial Difference;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence of ergodic measures of maximal Hausdorff dimension for hyperbolic sets of surface diffeomorphisms. This is a dimension-theoretical version of the existence of ergodic measures of maximal entropy. The crucial difference is that while the entropy map is upper-semicontinuous, the map ν↦ dimHν is neither upper-semicontinuous nor lower-semicontinuous. This forces us to develop a new approach, which is based on the thermodynamic formalism. Remarkably, for a generic diffeomorphism with a hyperbolic set, there exists an ergodic measure of maximal Hausdorff dimension in a particular two-parameter family of equilibrium measures.
引用
收藏
页码:93 / 113
页数:20
相关论文
共 12 条
  • [1] Barreira L.(1999)Dimension and product structure of hyperbolic measures Ann. Math. (2) 149 755-783
  • [2] Pesin Ya.(2001)undefined Commun. Math. Phys. 219 443-undefined
  • [3] Schmeling J.(1991)undefined Nonlinearity 4 365-undefined
  • [4] Barreira undefined(1985)undefined Rev. Mod. Phys. 57 617-undefined
  • [5] Denker undefined(1998)undefined Discrete Contin. Dynam. Systems 4 405-undefined
  • [6] Eckmann undefined(1990)undefined Bol. Soc. Brasil. Mat. (N.S.) 20 1-undefined
  • [7] Friedland undefined(1983)undefined Ergodic Theory Dynam. Systems 3 251-undefined
  • [8] Mañé undefined(1982)undefined Ergodic Theory Dynam. Systems 2 99-undefined
  • [9] McCluskey undefined(1970)undefined Invent. Math. 11 99-undefined
  • [10] Ruelle undefined(1982)undefined Ergodic Theory Dynam. Systems 2 109-undefined