Limit Cycles of Discontinuous Perturbed Quadratic Center via the Second Order Averaging Method

被引:0
|
作者
Fangfang Jiang
机构
[1] Jiangnan University,School of Science
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Discontinuous differential system; Quadratic center; Limit cycle; Number; Bifurcation.; 34A36; 34C07; 34C23; 34C29;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the number of limit cycles for a piecewise smooth quadratic integrable but non-Hamiltonian system having a center, which is separated by a straight line x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=0$$\end{document} (called as a switching line). When the quadratic center perturbed inside discontinuous quadratic and cubic homogenous polynomials starting with terms of degree 1, by applying the second order averaging method of discontinuous differential equations, we obtain two criteria on the lower upper bounds of the maximum number of limit cycles bifurcating from the period annulus. And the bounds can be realized.
引用
收藏
相关论文
共 50 条