Plasmon-Matter Interactions in Optoelectronic Metamaterials with Negative Refractive Index

被引:0
|
作者
Jinjin Xie
Qingyan Fan
Fuchun Xi
Hong Xiao
Ziao Tian
Lijian Zhang
Jie Xu
Qijun Ren
Lei Zhou
Paul K. Chu
Zhenghua An
机构
[1] Fudan University,Institute of Advanced Materials and State Key Laboratory of Surface Physics
[2] City University of Hong Kong,Department of Physics and Materials Science
来源
Plasmonics | 2013年 / 8卷
关键词
Plasmon-matter interactions (PMIs); Negative refractive index (NRI); Localized surface plasmons (LSP); Gap surface plasmons (GSP); Intersubband transition (ISBT);
D O I
暂无
中图分类号
学科分类号
摘要
Optoelectronic metamaterials composed of nanoscale metallic structures and semiconductor quantum structures constitute a powerful platform to explore light-matter interaction and new devices. In this work, we numerically study an optoelectronically coupled metamaterial consisting of metallic double fishnet (DF) layers and semiconductor quantum well (QW) spacing layer. When the electronic intersubband transition (ISBT) in the QW coincides with the plasmonic resonances of the DF structure, the plasmon-matter interaction (PMI) can modify the optical properties considerably. In case of the ISBT-matching localized surface plasmons (LSP), i.e., fQW = fLSP, the polarization-selection-rule forbidden ISBT absorption can be enabled due to the nonnegligible Ez field distributions while the retrieved optical constants remain almost unchanged. However, when the gap surface plasmons (GSP) are matched, i.e., fQW = fGSP, PMI exhibits a clear anti-crossing behavior implying strong coupling effects between ISBT and GSP resonance and formation of intersubband polaritons. The effective optical constants are therefore modulated appreciably. The large difference between GSP and LSP can be attributed to their distinctive resonance qualities (Q-factors) and polarization conversion ratios (99.28 % for GSP and 1.54 % for LSP) from the transverse electric (TE) to transverse magnetic (TM) mode. Our results provide insight into the physical mechanism of PMI in nanoscale semiconductor-plasmon hybrid systems and suggest an alternative means in tunable negative refractive index (NRI) applications.
引用
收藏
页码:1309 / 1315
页数:6
相关论文
共 50 条
  • [1] Plasmon-Matter Interactions in Optoelectronic Metamaterials with Negative Refractive Index
    Xie, Jinjin
    Fan, Qingyan
    Xi, Fuchun
    Xiao, Hong
    Tian, Ziao
    Zhang, Lijian
    Xu, Jie
    Ren, Qijun
    Zhou, Lei
    Chu, Paul K.
    An, Zhenghua
    PLASMONICS, 2013, 8 (03) : 1309 - 1315
  • [2] Metamaterials with negative refractive index
    Zhilin, A. A.
    Shepilov, M. P.
    JOURNAL OF OPTICAL TECHNOLOGY, 2008, 75 (04) : 255 - 265
  • [3] Metamaterials and negative refractive index
    Smith, DR
    Pendry, JB
    Wiltshire, MCK
    SCIENCE, 2004, 305 (5685) : 788 - 792
  • [4] Negative refractive index metamaterials
    Padilla, Willie J.
    Basov, Dimitri N.
    Smith, David R.
    MATERIALS TODAY, 2006, 9 (7-8) : 28 - 35
  • [5] Simulation of metamaterials negative refractive index
    Ghadbane, Tahar
    Guessas, Hocine
    JOURNAL OF NEW TECHNOLOGY AND MATERIALS, 2018, 8 (02) : 100 - 103
  • [6] Design of metamaterials with negative refractive index
    Smith, DR
    Vier, DC
    QUANTUM SENSING AND NANOPHOTONIC DEVICES, 2004, 5359 : 52 - 63
  • [7] Negative Refractive Index in Chiral Metamaterials
    Zhang, Shuang
    Park, Yong-Shik
    Li, Jensen
    Lu, Xinchao
    Zhang, Weili
    Zhang, Xiang
    PHYSICAL REVIEW LETTERS, 2009, 102 (02)
  • [8] Negative refractive index in artificial metamaterials
    Grigorenko, A. N.
    OPTICS LETTERS, 2006, 31 (16) : 2483 - 2485
  • [9] Negative refractive index metamaterials in optics
    Litchinitser, Natalia M.
    Gabitov, Ildar R.
    Maimistov, Andrei I.
    Shalaev, Vladimir M.
    PROGRESS IN OPTICS, VOL 51, 2008, 51 : 1 - 67
  • [10] Localized surface-plasmon resonances and negative refractive index in nanostructured electromagnetic metamaterials
    Parsons, J.
    Hendry, E.
    Sambles, J. R.
    Barnes, W. L.
    PHYSICAL REVIEW B, 2009, 80 (24):