A generalized parametric approach for solving different fuzzy parameter based multi-objective transportation problem

被引:0
|
作者
Yadvendra Kacher
Pitam Singh
机构
[1] Motilal Nehru National Institute of Technology,Department of Mathematics
[2] Allahabad,undefined
来源
Soft Computing | 2024年 / 28卷
关键词
Fuzzy parameter based multi-objective transportation problem; Precision parameter; Fuzzy programming; Grey relational analysis; Euclidean distance; Preferred compromise solution etc;
D O I
暂无
中图分类号
学科分类号
摘要
This research article presents a novel two-step generalized parametric approach to address various fuzzy parameter-based multi-objective transportation problems. These problems involve uncertain or imprecise data, making it challenging to find precise solutions. This research article aims to find multiple optimal solutions for various values of the parameter μ∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in [0,1]$$\end{document}, ultimately giving decision-makers a range of options from which the final solution is to choose. The suggested methodology consists of two main steps. In the first step, the fuzzy data is partitioned into distinct split levels using parametric equations controlled by the precision parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, thereby transforming the FMOTPs into CMOTPs. In the second step, fuzzy programming techniques are employed to solve the CMOTPs for varying values of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, generating multiple optimal solutions. The gray relational analysis (GRA) technique is utilized within each split level to identify the best optimal compromise solution for that specific level. Furthermore, the preferred compromise solution is selected based on its minimal Euclidean distance to the ideal solution across all split levels, offering additional insights for decision-making. The proposed method is illustrated on three numerical problems, demonstrating its effectiveness in providing a range of trade-offs between conflicting objectives. A comparative analysis with existing methods in the literature highlights the advantages of the proposed approach, showcasing its practical usefulness in real-world transportation decision-making processes.
引用
收藏
页码:3187 / 3206
页数:19
相关论文
共 50 条
  • [1] A generalized parametric approach for solving different fuzzy parameter based multi-objective transportation problem
    Kacher, Yadvendra
    Singh, Pitam
    SOFT COMPUTING, 2024, 28 (04) : 3187 - 3206
  • [2] New approach for solving intuitionistic fuzzy multi-objective transportation problem
    SANKAR KUMAR ROY
    ALI EBRAHIMNEJAD
    JOSÉ LUIS VERDEGAY
    SUKUMAR DAS
    Sādhanā, 2018, 43
  • [3] New approach for solving intuitionistic fuzzy multi-objective transportation problem
    Roy, Sankar Kumar
    Ebrahimnejad, Ali
    Luis Verdegay, Jose
    Das, Sukumar
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (01):
  • [4] An Effective Approach for Solving Multi-objective Transportation Problem
    Kaur, Lakhveer
    Singh, Sukhveer
    Bhandari, Ashok Singh
    Singh, Sandeep
    Ram, Mangey
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2023, 16 (01): : 153 - 170
  • [5] A FUZZY APPROACH TO SOLVE MULTI-OBJECTIVE TRANSPORTATION PROBLEM
    Lohgaonkar, M. H.
    Bajaj, V. H.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2009, 5 (02): : 443 - 452
  • [6] GOAL PROGRAMMING APPROACH FOR SOLVING MULTI-OBJECTIVE FRACTIONAL TRANSPORTATION PROBLEM WITH FUZZY PARAMETERS
    Anukokila, Paraman
    Radhakrishnan, Bheeman
    Anju, Antony
    RAIRO-OPERATIONS RESEARCH, 2019, 53 (01) : 157 - 178
  • [7] Stability of Parametric Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem
    El Sayed, Mohamed A.
    El-Shorbagy, Mohamed A.
    Farahat, Farahat A.
    Fareed, Aisha F.
    Elsisy, Mohamed A.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [8] Fuzzy arithmetic DEA approach for fuzzy multi-objective transportation problem
    Bagheri, M.
    Ebrahimnejad, A.
    Razavyan, S.
    Lotfi, F. Hosseinzadeh
    Malekmohammadi, N.
    OPERATIONAL RESEARCH, 2022, 22 (02) : 1479 - 1509
  • [9] Fuzzy arithmetic DEA approach for fuzzy multi-objective transportation problem
    M. Bagheri
    A. Ebrahimnejad
    S. Razavyan
    F. Hosseinzadeh Lotfi
    N. Malekmohammadi
    Operational Research, 2022, 22 : 1479 - 1509
  • [10] Fuzzy Programming Approach to Solve Multi-objective Transportation Problem
    Kumar, Sandeep
    Pandey, Diwakar
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 1, 2012, 130 : 525 - 533