Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography

被引:0
作者
Ning Mao
Yinghong Shi
Chun Lian
Zhongyi Wang
Kun Zhang
Haizhu Xie
Haicheng Zhang
Qianqian Chen
Guanxun Cheng
Cong Xu
Yi Dai
机构
[1] Qingdao University,Department of Radiology, Yantai Yuhuangding Hospital
[2] Qingdao University,Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital
[3] Peking University Shenzhen Hospital,Department of Radiology
[4] Qingdao University,Department of Breast Surgery, Yantai Yuhuangding Hospital
[5] GE Healthcare,Precision Health Institution
[6] Qingdao University,Physical Examination Center, Yantai Yuhuangding Hospital
来源
European Radiology | 2022年 / 32卷
关键词
Breast Neoplasms; Machine Learning; Mammography; Neoadjuvant therapy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3207 / 3219
页数:12
相关论文
共 14 条
[1]  
Harbeck N(2017)Breast cancer Lancet 389 1134-1150
[2]  
Gnant M(2018)Contrast-enhanced spectral mammography (CESM) Clin Radiol 73 715-723
[3]  
James JJ(2020)The diagnostic performance of CESM and CE-MRI in evaluating the pathological response to neoadjuvant therapy in breast cancer: a systematic review and meta-analysis Br J Radiol 93 20200301-163
[4]  
Tennant SL(2016)A guideline of selecting and reporting intraclass correlation coefficients for reliability research J Chiropr Med 15 155-574
[5]  
Tang S(2006)Decision curve analysis: a novel method for evaluating prediction models Med Decis Making 26 565-1500
[6]  
Xiang C(2020)Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images Int J Comput Assist Radiol Surg 15 1491-undefined
[7]  
Yang Q(undefined)undefined undefined undefined undefined-undefined
[8]  
Koo TK(undefined)undefined undefined undefined undefined-undefined
[9]  
Li MY(undefined)undefined undefined undefined undefined-undefined
[10]  
Vickers AJ(undefined)undefined undefined undefined undefined-undefined