Spectrum of the Neumann–Poincaré Operator for Ellipsoids and Tunability

被引:0
作者
Tingting Feng
Hyeonbae Kang
机构
[1] Inha University,Department of Mathematics
来源
Integral Equations and Operator Theory | 2016年 / 84卷
关键词
Primary 35J47; Secondary 35P05; Neumann–Poincaré operator; Spectrum; Ellipsoid; Prolate spheroid; Oblate spheroid; Tunability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider tunability of the eigenvalues of the Neumann–Poincaré operator on ellipsoids. We show in particular that for any number λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm \lambda}$$\end{document} with -1/2<λ<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-1/2 < {\rm \lambda} < 1/2}$$\end{document} there is an ellipsoid (a prolate spheroid or an oblate spheroid) on which λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm \lambda}$$\end{document} is an eigenvalue of the Neumann–Poincaré operator. As a byproduct, we find that there is a domain in three dimensions, actually an oblate spheroid, on which 0 is an eigenvalue of the Neumann–Poincaré operator.
引用
收藏
页码:591 / 599
页数:8
相关论文
共 23 条
[1]  
Ahner J.F.(1994)On the eigenvalues of the electrostatic integral operator. II J. Math. Anal. Appl. 181 328-334
[2]  
Ahner J.F.(1986)On the eigenvalues of the electrostatic integral operator J. Math. Anal. Appl. 117 187-197
[3]  
Arenstorf R.F.(2007)A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids J. Comput. Math. 25 2-12
[4]  
Ammari H.(2016)Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann–Poincaré operators J. Math. Anal. Appl. 435 162-178
[5]  
Kang H.(1998)Verified computation of Lamé functions with high accuracy Computing 60 81-89
[6]  
Lee H.(2001)An inverse problem for the double layer potential Comput. Methods Funct. Theory 1 387-401
[7]  
Ando K.(2007)Poincaré’s variational problem in potential theory Arch. Ration. Mech. Anal. 185 143-184
[8]  
Kang H.(2001)Symmetry of a boundary integral operator and a characterization of a ball Ill. J. Math. 45 537-543
[9]  
Dobner H.-J.(2005)Electrostatic (plasmon) resonances in nanoparticles Phys. Rev. B 72 155412-1433
[10]  
Ritter S.(1977)Surface plasmon oscillations for different geometrical shapes Can. J. Phys. 55 1423-undefined