A Comparison of ZnO Nanowires and Nanorods Grown Using MOCVD and Hydrothermal Processes

被引:0
作者
Abdiel Rivera
John Zeller
Ashok Sood
Mehdi Anwar
机构
[1] University of Connecticut,Electrical and Computer Engineering
[2] Magnolia Optical Technologies,undefined
来源
Journal of Electronic Materials | 2013年 / 42卷
关键词
ZnO; nanowires; nanorods; MOCVD; hydrothermal; photoluminescence;
D O I
暂无
中图分类号
学科分类号
摘要
A comparison of ZnO nanowires (NWs) and nanorods (NRs) grown using metalorganic chemical vapor deposition (MOCVD) and hydrothermal synthesis, respectively, on p-Si (100), GaN/sapphire, and SiO2 substrates is reported. Scanning electron microscopy (SEM) images reveal that ZnO NWs grown using MOCVD had diameters varying from 20 nm to 150 nm and approximate lengths ranging from 0.7 μm to 2 μm. The NWs exhibited clean termination/tips in the absence of any secondary nucleation. The NRs grown using the hydrothermal method had diameters varying between 200 nm and 350 nm with approximate lengths between 0.7 μm and 1 μm. However, the NRs grown on p-Si overlapped with each other and showed secondary nucleation. x-Ray diffraction (XRD) of (0002)-oriented ZnO NWs grown on GaN using MOCVD demonstrated a full-width at half-maximum (FWHM) of 0.0498 (θ) compared with 0.052 (θ) for ZnO NRs grown on similar substrates using hydrothermal synthesis, showing better crystal quality. Similar crystal quality was observed for NWs grown on p-Si and SiO2 substrates. Photoluminescence (PL) of the NWs grown on p-Si and SiO2 showed a single absorption peak attributed to exciton–exciton recombination. ZnO NWs grown on GaN/sapphire had defects associated with oxygen interstitials and oxygen vacancies.
引用
收藏
页码:894 / 900
页数:6
相关论文
共 156 条
  • [1] Ryu Y(2006)undefined Appl. Phys. Lett. 88 241108-113
  • [2] Lee TS(2001)undefined J. Cryst. Growth 225 110-3048
  • [3] Lubguban JA(2009)undefined Appl. Phys. Lett. 94 22106-154
  • [4] White HW(2006)undefined Appl. Phys. Lett. 88 233106-3957
  • [5] Kim BJ(2002)undefined Appl. Phys. Lett. 81 3046-6682
  • [6] Park YS(2009)undefined J. Vac. Sci. Technol. B 87 1662-402
  • [7] Youn CJ(2004)undefined J. Cryst. Growth 268 149-7332
  • [8] Liang S(2005)undefined Appl. Phys. Lett. 86 153119-72
  • [9] Sheng H(2004)undefined Acta Mater. 52 3949-161
  • [10] Liu Y(2010)undefined Nanotechnology 21 045701-1415