Model fusion of deep neural networks for anomaly detection

被引:0
|
作者
Nouar AlDahoul
Hezerul Abdul Karim
Abdulaziz Saleh Ba Wazir
机构
[1] Multimedia University,Faculty of Engineering
来源
Journal of Big Data | / 8卷
关键词
Anomaly detection; Deep neural network; Highly imbalanced data; Model fusion; Class weight optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Network Anomaly Detection is still an open challenging task that aims to detect anomalous network traffic for security purposes. Usually, the network traffic data are large-scale and imbalanced. Additionally, they have noisy labels. This paper addresses the previous challenges and utilizes million-scale and highly imbalanced ZYELL’s dataset. We propose to train deep neural networks with class weight optimization to learn complex patterns from rare anomalies observed from the traffic data. This paper proposes a novel model fusion that combines two deep neural networks including binary normal/attack classifier and multi-attacks classifier. The proposed solution can detect various network attacks such as Distributed Denial of Service (DDOS), IP probing, PORT probing, and Network Mapper (NMAP) probing. The experiments conducted on a ZYELL’s real-world dataset show promising performance. It was found that the proposed approach outperformed the baseline model in terms of average macro Fβ score and false alarm rate by 17% and 5.3%, respectively.
引用
收藏
相关论文
共 50 条
  • [1] Model fusion of deep neural networks for anomaly detection
    AlDahoul, Nouar
    Karim, Hezerul Abdul
    Wazir, Abdulaziz Saleh Ba
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [2] A Uniform Framework for Anomaly Detection in Deep Neural Networks
    Zhao, Fangzhen
    Zhang, Chenyi
    Dong, Naipeng
    You, Zefeng
    Wu, Zhenxin
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 3467 - 3488
  • [3] A Uniform Framework for Anomaly Detection in Deep Neural Networks
    Fangzhen Zhao
    Chenyi Zhang
    Naipeng Dong
    Zefeng You
    Zhenxin Wu
    Neural Processing Letters, 2022, 54 : 3467 - 3488
  • [4] Deep Neural Networks With Confidence Sampling For Electrical Anomaly Detection
    Tasfi, Norman L.
    Higashino, Wilson A.
    Grolinger, Katarina
    Capretz, Miriam A. M.
    2017 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2017, : 1038 - 1045
  • [5] Detection of Anomaly User Behaviors Based on Deep Neural Networks
    Ding, Zhaoyun
    Liu, Lina
    Yu, Donghua
    Huang, Songping
    Zhang, Hang
    Liu, Kai
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1240 - 1245
  • [6] ANOMALY DETECTION IN THERMAL IMAGES USING DEEP NEURAL NETWORKS
    Cai Lile
    Li Yiqun
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2299 - 2303
  • [7] Enhanced Network Anomaly Detection Based on Deep Neural Networks
    Naseer, Sheraz
    Saleem, Yasir
    Khalid, Shehzad
    Bashir, Muhammad Khawar
    Han, Jihun
    Iqbal, Muhammad Munwar
    Han, Kijun
    IEEE ACCESS, 2018, 6 : 48231 - 48246
  • [8] A multi-information fusion anomaly detection model based on convolutional neural networks and AutoEncoder
    Zhao, Zhongnan
    Guo, Hongwei
    Wang, Yue
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Video Anomaly Detection with Sparse Coding Inspired Deep Neural Networks
    Luo, Weixin
    Liu, Wen
    Lian, Dongze
    Tang, Jinhui
    Duan, Lixin
    Peng, Xi
    Gao, Shenghua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) : 1070 - 1084
  • [10] The deep fusion of topological structure and attribute information for anomaly detection in attributed networks
    Jiangjun Su
    Yihong Dong
    Jiangbo Qian
    Yu Xin
    Jiacheng Pan
    Applied Intelligence, 2022, 52 : 1013 - 1029