Gröbner-Shirshov bases for universal enveloping conformal algebras of simple conformal Lie superalgebras of type WN

被引:0
|
作者
Kolesnikov P.S. [1 ]
机构
[1] Institute of Mathematics SB RAS, Akademika Koptyuga Prospekt, 4, Novosibirsk
关键词
Gröbner-Shirshov basis; Locality function; Simple conformal Lie superalgebra; Universal enveloping algebra;
D O I
10.1023/B:ALLO.0000020848.22915.74
中图分类号
学科分类号
摘要
For simple conformal Lie superalgebras of type WN, Gröbner-Shirshov bases of their universal enveloping associative conformal algebras are found. The universal enveloping algebras considered correspond to a minimal locality function for which there is an injective embedding. © 2004 Plenum Publishing Corporation.
引用
收藏
页码:109 / 122
页数:13
相关论文
共 18 条
  • [1] Some applications of Gröbner-Shirshov bases to Lie algebras
    Mendonca, Luis
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)
  • [2] Operator identities on Lie algebras, rewriting systems and Gr?bner-Shirshov bases
    Zhang, Huhu
    Gao, Xing
    Guo, Li
    JOURNAL OF ALGEBRA, 2023, 620 : 585 - 629
  • [3] Gröbner-Shirshov bases for the lie algebra A n
    Koryukin A.N.
    Algebra and Logic, 2005, 44 (2) : 73 - 81
  • [4] Grobner-Shirshov bases for Lie superalgebras and their universal enveloping algebras
    Bokut, LA
    Kang, SJ
    Lee, KH
    Malcolmson, P
    JOURNAL OF ALGEBRA, 1999, 217 (02) : 461 - 495
  • [5] Gröbner-Shirshov bases for Rota-Baxter algebras
    L.A. Bokut
    Yu. Chen
    X. Deng
    Siberian Mathematical Journal, 2010, 51 : 978 - 988
  • [6] Gröbner-Shirshov Bases for Temperley-Lieb Algebras of Type F
    Lee, Jeong-Yup
    Lee, Dong-il
    SYMMETRY-BASEL, 2024, 16 (11):
  • [7] Gröbner–Shirshov bases for some Lie algebras
    Yu. Chen
    Y. Li
    Q. Tang
    Siberian Mathematical Journal, 2017, 58 : 176 - 182
  • [8] Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras
    Bokut L.A.
    Chen Y.
    Li Y.
    Journal of Mathematical Sciences, 2010, 166 (5) : 603 - 612
  • [9] Gröbner-Shirshov bases of irreducible modules of the quantum group of type G2
    Ghani Usta
    Abdukadir Obul
    Chinese Annals of Mathematics, Series B, 2016, 37 : 427 - 440
  • [10] Grbner-Shirshov Bases of Irreducible Modules of the Quantum Group of Type G2
    Ghani USTA
    Abdukadir OBUL
    ChineseAnnalsofMathematics(SeriesB), 2016, 37 (03) : 427 - 440