A convergence result related to the geometric flow of motion by principal negative curvature

被引:0
|
作者
Y. L. Ruan
机构
[1] Beijing University of Aeronautics and Astronautics,
来源
Archiv der Mathematik | 2020年 / 114卷
关键词
Quasiconvexity; Viscosity solution; Geometric flow; 35K55; 35D40; 35K10;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper (Carlier et al. in ESAIM Control Optim Calc Var 18(3):611–620, 2012), an interpolation flow between an evolution by convexity and the geometric flow of motion by principal negative curvature was informally proposed. It is also expected that the geometric flow will eventually convexify the sub-level sets of the initial function u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document}, yielding the quasiconvex envelope of u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document}. In this note, we establish existence and uniqueness of the interpolation flow under appropriate conditions and provide a rigorous proof for its limit behaviour. In addition, we show by example that, contrary to intuition, the proposed geometric flow does not always convexify the sub-level sets of u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document}.
引用
收藏
页码:585 / 594
页数:9
相关论文
共 50 条