Univalent Functions in Cyclic Vectors in Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_p$$\end{document} Space

被引:0
作者
Zhengyuan Zhuo
Shanli Ye
机构
[1] Fujian Normal University,Department of Mathematics
关键词
spaces; Cyclic vectors; Univalent functions; 30H25; 47A16; 46E15;
D O I
10.1007/s11785-013-0338-y
中图分类号
学科分类号
摘要
In this paper, we show that if a function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} in the Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_p$$\end{document} space with 0<p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<1$$\end{document} is univalent, then f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is a cyclic vector if and only if f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} vanishes nowhere in the unit disk.
引用
收藏
页码:1077 / 1086
页数:9
相关论文
共 32 条
[1]  
Aleman A(2007)Preduals of Complex Var. Elliptic Equ. 52 605-628
[2]  
Carleson M(1990)-spaces Trans. Am. Math. Soc. 323 429-448
[3]  
Persson AM(1949)Inner functions in the cyclic vectors in the Bloch space Acta Math. 81 239-255
[4]  
Anderson JM(1984)On two problems concering linear transformations in Hilbert space Trans. Am. Math. Soc. 285 269-304
[5]  
Fernandez JL(1991)Cyclic vectors in the Dirichlet space Michigan Math. J. 38 141-146
[6]  
Shields AL(2009)Multipliers and cyclic vectors in the Bloch space Adv. Math. 222 2196-2214
[7]  
Beurling A(2010)On the Brown–Shields conjecture for cyclicity in the Dirichlet space J. Math. Anal. Appl. 372 565-573
[8]  
Brown L(2006)Cantor sets and cyclicity in weighted Dirichlet spaces J. Funct. Anal. 233 40-59
[9]  
Shields AL(1992)Splitting planar isoperimetric inequality through preduality of J. Oper. Theory. 28 167-186
[10]  
Brown L(2006), Contemp. Math. 393 171-197