Spatial interpolation of surface point velocity using an adaptive neuro-fuzzy inference system model: a comparative study

被引:0
|
作者
Seyyed Reza Ghaffari-Razin
Asghar Rastbood
Navid Hooshangi
机构
[1] Arak University of Technology,Department of Geoscience Engineering
[2] University of Tabriz,Faculty of Civil Engineering
来源
GPS Solutions | 2023年 / 27卷
关键词
Velocity field; GPS; ANFIS; Kriging;
D O I
暂无
中图分类号
学科分类号
摘要
Surface displacement measurements of the earth’s crust using GNSS observations are a discrete form and occur at the location of stations. Therefore, it is not possible to study crustal deformation as a continuous field. To overcome this problem, we propose the idea of using an adaptive neuro-fuzzy inference system (ANFIS) model. In the new method, the geodetic coordinates of GPS stations are input vectors, and the components of the displacement field in two-dimensions (Ve, Vn) are used as an output. The new method is analyzed using the observations of 25 GPS stations located in the northwest of Iran. Due to ample GPS stations and a tectonically active area, this region has been selected for study. The results of the new model are compared with the GPS-observed results, and with results produced by three alternative interpolation processes, namely artificial neural network (ANN), Ordinary Kriging (OK) and polynomial velocity field. The root-mean-square error (RMSE), correlation coefficient and relative error are calculated for all four interpolation processes. In the testing step, the averaged RMSE of the ANN, ANFIS, OK, and polynomial models is 2.0, 1.6, 2.7 and 3.2 mm year. The estimated velocity field by the ANFIS has been converted to a strain field and compared to the strain obtained from GPS measurements. Comparing the modeled strains with the ANFIS and GPS output for two control stations shows a correlation coefficient of 0.94 between the new model and GPS. The results reveal the capability and efficiency of ANFIS in comparison with ANN, OK and polynomial models.
引用
收藏
相关论文
共 50 条
  • [1] Spatial interpolation of surface point velocity using an adaptive neuro-fuzzy inference system model: a comparative study
    Ghaffari-Razin, Seyyed Reza
    Rastbood, Asghar
    Hooshangi, Navid
    GPS SOLUTIONS, 2023, 27 (01)
  • [2] Image Interpolation Based on Adaptive Neuro-Fuzzy Inference System
    Maleki, Shiva Aghapour
    Tinati, Mohammad Ali
    Tazehkand, Behzad Mozaffari
    2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION (ICISPC), 2019, : 78 - 84
  • [3] Comparative study of Adaptive neuro-fuzzy and fuzzy inference system for diagnosis of hypertension
    Nohria, Rimpy
    2017 INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC), 2017, : 406 - 411
  • [4] Surface interpolation by adaptive Neuro-Fuzzy Inference System based local Ordinary Kriging
    Özkan, C
    COMPUTER VISION - ACCV 2006, PT I, 2006, 3851 : 196 - 205
  • [5] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [6] Tweet recommender model using adaptive neuro-fuzzy inference system
    Jain, Deepak Kumar
    Kumar, Akshi
    Sharma, Vibhuti
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 112 : 996 - 1009
  • [7] Comparative study between Fuzzy Inference System, Adaptive Neuro-Fuzzy Inference System and Neural Network for Healthcare Monitoring
    Krizea, Maria
    Gialelis, John
    Koubias, Stavros
    2019 8TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2019, : 616 - 619
  • [8] An accurate optical gain model using adaptive neuro-fuzzy inference system
    Celebi, F. V.
    Altindag, T.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2009, 3 (10): : 975 - 977
  • [9] Noise cancellation by using Adaptive Neuro-Fuzzy Inference System
    Zhang, Bao-cheng
    Xu, Xie-xian
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2000, 4 (04): : 62 - 67
  • [10] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523