Reflections on univariate and multivariate analysis of metabolomics data

被引:4
作者
Edoardo Saccenti
Huub C. J. Hoefsloot
Age K. Smilde
Johan A. Westerhuis
Margriet M. W. B. Hendriks
机构
[1] University of Amsterdam,Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences
[2] Leiden Academic Centre for Drug Research,Analytical Biosciences
[3] Netherlands Metabolomics Centre,undefined
来源
Metabolomics | 2014年 / 10卷
关键词
Univariate analysis; Multivariate analysis; Hypothesis testing; Multiple test correction; Overfitting; Consistency at large;
D O I
暂无
中图分类号
学科分类号
摘要
Metabolomics experiments usually result in a large quantity of data. Univariate and multivariate analysis techniques are routinely used to extract relevant information from the data with the aim of providing biological knowledge on the problem studied. Despite the fact that statistical tools like the t test, analysis of variance, principal component analysis, and partial least squares discriminant analysis constitute the backbone of the statistical part of the vast majority of metabolomics papers, it seems that many basic but rather fundamental questions are still often asked, like: Why do the results of univariate and multivariate analyses differ? Why apply univariate methods if you have already applied a multivariate method? Why if I do not see something univariately I see something multivariately? In the present paper we address some aspects of univariate and multivariate analysis, with the scope of clarifying in simple terms the main differences between the two approaches. Applications of the t test, analysis of variance, principal component analysis and partial least squares discriminant analysis will be shown on both real and simulated metabolomics data examples to provide an overview on fundamental aspects of univariate and multivariate methods.
引用
收藏
页码:361 / 374
页数:13
相关论文
共 50 条
[41]   Uncertainties in depth determination and comparison of multivariate with univariate analysis in confocal Raman studies of a laminated polymer and skin [J].
Xiao, CH ;
Flach, CR ;
Marcott, C ;
Mendelsohn, R .
APPLIED SPECTROSCOPY, 2004, 58 (04) :382-389
[42]   Aromatic hydrocarbons in the atmospheric environment - Part II: univariate and multivariate analysis and case studies of indoor concentrations [J].
Ilgen, E ;
Levsen, K ;
Angerer, J ;
Schneider, P ;
Heinrich, J ;
Wichmann, HE .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (07) :1253-1264
[43]   Locoregional recurrence of breast cancer following mastectomy: Always a fatal event? Results of univariate and multivariate analysis [J].
Willner, J ;
Kiricuta, IC ;
Kolbl, O .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 37 (04) :853-863
[44]   Binary Simplification as an Effective Tool in Metabolomics Data Analysis [J].
Traquete, Francisco ;
Luz, Joao ;
Cordeiro, Carlos ;
Sousa Silva, Marta ;
Ferreira, Antonio E. N. .
METABOLITES, 2021, 11 (11)
[45]   Analysis of Metabolomics data in Natural Products: a Tutorial Review [J].
Maimone, Naydja M. ;
Pereira, Alana K. ;
Gimenes, Leila ;
Fernandes, Hocelayne P. ;
Fill, Taicia P. ;
Borges, Ricardo M. ;
Lira, Simone P. ;
Fernandes, Joao B. ;
Bauermeister, Anelize .
REVISTA VIRTUAL DE QUIMICA, 2024, 16 (02) :248-270
[46]   INTERPRETATION OF GEOCHEMICAL DATA BY THE USE OF MULTIVARIATE DATA-ANALYSIS [J].
KARADJOV, M ;
SIMEONOV, V .
MIKROCHIMICA ACTA, 1990, 3 (4-6) :191-199
[47]   Multivariate phase synchronization analysis of EEG data [J].
Allefeld, C ;
Kurths, J .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (09) :2218-2221
[48]   CHEMOSTAT: EXPLORATORY MULTIVARIATE DATA ANALYSIS SOFTWARE [J].
Helfer, Gilson A. ;
Bock, Fernanda ;
Marder, Luciano ;
Furtado, Joao C. ;
da Costa, Adilson B. ;
Ferrao, Marco F. .
QUIMICA NOVA, 2015, 38 (04) :575-579
[49]   Multivariate analysis for scanning tunneling spectroscopy data [J].
Yamanishi, Junsuke ;
Iwase, Shigeru ;
Ishida, Nobuyuki ;
Fujita, Daisuke .
APPLIED SURFACE SCIENCE, 2018, 428 :186-190
[50]   Discriminant coordinates analysis for multivariate functional data [J].
Hanusz, Zofia ;
Krzysko, Miroslaw ;
Nadulski, Rafal ;
Waszak, Lukasz .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) :4506-4519