Anderson Localization for Jacobi Matrices Associated with High-Dimensional Skew Shifts

被引:0
作者
Jia Shi
Xiaoping Yuan
机构
[1] Fudan University,School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2020年 / 41卷
关键词
Anderson localization; Jacobi matrices; Skew shifts; 39A70; 47B36;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors establish Anderson localization for a class of Jacobi matrices associated with skew shifts on Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{T}^d$$\end{document}, d ≥ 3.
引用
收藏
页码:495 / 510
页数:15
相关论文
共 22 条
  • [1] Basu S(1999)On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets Discrete Comput. Geom. 22 1-18
  • [2] Basu S(1996)On the combinatorial and algebraic complexity of quantifier elimination J. ACM 43 1002-1045
  • [3] Pollack R(2002)Estimates on Green’s functions, localization and the quantum kicked rotor model Ann. of Math. (2) 156 249-294
  • [4] Roy M-F(2007)Anderson localization for quasi-periodic lattice Schrödinger operators on ℤ Geom. Funct. Anal. 17 682-706
  • [5] Bourgain J(2000), Ann. of Math. (2) 152 835-879
  • [6] Bourgain J(2001) arbitrary Comm. Math. Phys. 220 583-621
  • [7] Bourgain J(2002)On nonperturbative localization with quasi-periodic potential Acta Math. 188 41-86
  • [8] Goldstein M(2019)Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift Geom. Funct. Anal. 29 3-43
  • [9] Bourgain J(1987)Anderson localization for Schrödinger operators on Astérisque 145–146 225-240
  • [10] Goldstein M(2019) with quasi-periodic potential Proc. Amer. Math. Soc. 147 2887-2897