Triangle Percolation in Mean Field Random Graphs—with PDE

被引:0
作者
Balázs Ráth
Bálint Tóth
机构
[1] Budapest University of Technology (BME),Institute of Mathematics
来源
Journal of Statistical Physics | 2008年 / 131卷
关键词
Random graphs; Erdős-Rényi model; Triangle percolation; Mean field; PDE;
D O I
暂无
中图分类号
学科分类号
摘要
We apply a PDE-based method to deduce the critical time and the size of the giant component of the “triangle percolation” on the Erdős-Rényi random graph process investigated by Derényi, Palla and Vicsek in (Phys. Rev. Lett. 94:160202, [2005]; J. Stat. Phys. 128:219–227, [2007]).
引用
收藏
页码:385 / 391
页数:6
相关论文
共 17 条
[1]  
Aldous D.J.(1999)Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists Bernoulli 5 3-48
[2]  
Buffet E.(1990)On Lushnikov’s model of gelation J. Stat. Phys. 58 1041-1058
[3]  
Pulè J.V.(1991)Polymers and random graphs J. Stat. Phys. 64 87-110
[4]  
Buffet E.(2005)Clique percolation in random networks Phys. Rev. Lett. 94 160202-347
[5]  
Pulè J.V.(1961)On the evolution of random graphs Bull. Inst. Int. Stat. 38 343-231
[6]  
Derényi I.(2004)Convergence of the Marcus-Lushnikov process Methodol. Comput. Appl. Probab. 6 219-1232
[7]  
Palla G.(2004)Approach to self-similarity in Smoluchowski’s coagulation equations Commun. Pure Appl. Math. 57 1197-227
[8]  
Vicsek T.(2007)The critical point of k-clique percolation in the Erdős-Rényi graph J. Stat. Phys. 128 219-undefined
[9]  
Erdős P.(undefined)undefined undefined undefined undefined-undefined
[10]  
Rényi A.(undefined)undefined undefined undefined undefined-undefined