Diabetes type 2 classification using machine learning algorithms with up-sampling technique

被引:5
|
作者
Mariwan Ahmed Hama Saeed
机构
[1] University of Halabja,College of Basic Education
关键词
Diabetes; Diabetes type 2; Machine learning; Extra tree classifier; Up-sampling;
D O I
10.1186/s43067-023-00074-5
中图分类号
学科分类号
摘要
Recently, the rate of chronic diabetes disease has increased extensively. Diabetes increases blood sugar and other problems like blurred vision, kidney failure, nerve problems, and stroke. Researchers for predicting diabetes have constructed various models. In this paper, gradient boosting classifier, AdaBoost classifier, decision tree classifier, and extra trees classifier machine learning models have been utilized for identifying chronic diabetes disease. The models analyze the PIMA Indian Diabetes dataset (PIMA) and Behavioral Risk Factor Surveillance System (BRFSS) diabetes datasets to classify patients with positive or negative diagnoses. 80% of the datasets are used as training data and 20% as testing data. The extra trees classifier with an area under curve of 0.96% for PIMA and 0.99% for BRFSS datasets outperformed other models. Therefore, it is suggested that healthcare providers can use the ETC model to predict chronic disease.
引用
收藏
相关论文
共 50 条
  • [1] Classification of Hypoglycemic Events in Type 1 Diabetes Using Machine Learning Algorithms
    Cederblad, Lars
    Eklund, Gustav
    Vedal, Amund
    Hill, Henrik
    Caballero-Corbalan, Jose
    Hellman, Jarl
    Abrahamsson, Niclas
    Wahlstrom-Johnsson, Inger
    Carlsson, Per-Ola
    Espes, Daniel
    DIABETES THERAPY, 2023, 14 (06) : 953 - 965
  • [2] Classification of Hypoglycemic Events in Type 1 Diabetes Using Machine Learning Algorithms
    Lars Cederblad
    Gustav Eklund
    Amund Vedal
    Henrik Hill
    José Caballero-Corbalan
    Jarl Hellman
    Niclas Abrahamsson
    Inger Wahlström-Johnsson
    Per-Ola Carlsson
    Daniel Espes
    Diabetes Therapy, 2023, 14 : 953 - 965
  • [3] Diagnosis and Classification of the Diabetes Using Machine Learning Algorithms
    Theerthagiri P.
    Ruby A.U.
    Vidya J.
    SN Computer Science, 4 (1)
  • [4] Prediction of Type 2 Diabetes using Machine Learning Classification Methods
    Tigga, Neha Prerna
    Garg, Shruti
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 706 - 716
  • [5] Type 2 Diabetes Mellitus: Early Detection using Machine Learning Classification
    Gowthami, S.
    Reddy, Venkata Siva
    Ahmed, Mohammed Riyaz
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1191 - 1198
  • [6] Adversarial Task Up-sampling for Meta-learning
    Wu, Yichen
    Huang, Long-Kai
    Wei, Ying
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] A Digital Up-Sampling Technique for a Heterodyne Digital Centric Transmitter
    Bousseaud, Pierre
    Negra, Renato
    2015 GERMAN MICROWAVE CONFERENCE, 2015, : 48 - 51
  • [8] Classification of Diabetes using Machine Learning
    Ul Islam, Nair
    Khanam, Ruqaiya
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 185 - +
  • [9] The Applicability of Some Machine Learning Algorithms in the Prediction of Type 2 Diabetes
    Virgolici, Oana
    Tanasescu, Laura Gabriela
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BUSINESS EXCELLENCE, 2024, 18 (01): : 246 - 257
  • [10] Analysis of Predictive Parameters in Prediction of the Occurrence of Type 2 Diabetes Using Machine Learning Algorithms
    Hadzalic, Sumeja
    Obralija, Arnela
    Becirovic, Seila
    Kelle, Belma Pehlivanovic
    Krupalija, Ehlimana
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 732 - 740