MsRAN: a multi-scale residual attention network for multi-model image fusion

被引:0
作者
Jing Wang
Long Yu
Shengwei Tian
机构
[1] Xin Jiang University,College of Software Engineering
[2] Xinjiang University,Key Laboratory of Software Engineering Technology
[3] Xinjiang University,College of Information Science and Engineering
[4] Xinjiang University,College of Network Center
来源
Medical & Biological Engineering & Computing | 2022年 / 60卷
关键词
Image fusion; Multi-scale; Attention mechanism; Generative adversarial network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3615 / 3634
页数:19
相关论文
共 56 条
[1]  
Dogra A(2017)From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications IEEE Access 5 16040-16067
[2]  
Goyal B(2019)Infrared and visible image fusion methods and applications: a survey Information Fusion 45 153-178
[3]  
Agrawal S(2022)A multiscale double-branch residual attention network for anatomical–functional medical image fusion Comp Biol Med 141 105005-7467
[4]  
Ma J(2019)Coupled GAN with relativistic discriminators for infrared and visible images fusion IEEE Sensors J 21 7458-20688
[5]  
Ma Y(2019)Poisson reconstruction-based fusion of infrared and visible images via saliency detection IEEE Access 7 20676-61
[6]  
Li C(2015)A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain Infrared Phys Technol 69 53-75
[7]  
Li W(2011)Image fusion technique using multi-resolution singular value decomposition Def Sci J 61 479-15
[8]  
Peng X(2018)Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review Information Fusion 40 57-607
[9]  
Fu J(2020)Infrared and visible image fusion using visual saliency sparse representation and detail injection model IEEE Trans Instrum Meas 70 1-4995
[10]  
Wang G(2019)Multimodal medical image sensor fusion model using sparse K-SVD dictionary learning in nonsubsampled shearlet domain IEEE Trans Instrum Meas 69 593-173