Exact small ball constants for some Gaussian processes under the L 2-norm

被引:21
作者
Beghin L. [1 ]
Nikitin Y. [2 ]
Orsingher E. [1 ]
机构
[1] Dipartimento di Statistica, Probabilitae Statistiche Applicate, Universita di Roma “La Sapienza”, Rome
[2] St. Petersburg State University, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
Small Deviation; Brownian Motion; Gaussian Process; Wiener Process; Brownian Bridge;
D O I
10.1007/s10958-005-0197-9
中图分类号
学科分类号
摘要
We find some logarithmic and exact small deviation asymptotics for the L 2-norms of certain Gaussian processes closely connected with a Wiener process. In particular, processes obtained by centering and integrating Brownian motion and Brownian bridge are examined. Bibliography: 28 titles. ©2005 Springer Science+Business Media, Inc.
引用
收藏
页码:2493 / 2502
页数:9
相关论文
共 27 条
[1]  
Beghin L., Nikitin Ya., Orsingher E., Exact small ball constants for some Gaussian processes under the L <sup>2</sup>-norm, Technical Report, 4, (2002)
[2]  
Chen X., Li W.V., Quadratic functionals and small ball probabilities for the m-fold integrated Brownian motion, Ann. Probab., 31, pp. 1052-1077, (2003)
[3]  
Donati-Martin C., Yor M., Fubini's theorem for double Wiener integrals and the variance of the Brownian path, Ann. Inst. H.Poincaré, 27, pp. 181-200, (1991)
[4]  
Dudley R.M., Hoffman-Jorgensen J., Shepp L., On the lower tails of Gaussian seminorms, Ann. Prob., 7, pp. 319-342, (1979)
[5]  
Dunker T., Lifshits M.A., Linde W., Small deviations of sums of independent variables, Proc. Conf. High Dimensional Probability, Ser. Progress in Probability, 43, pp. 59-74, (1998)
[6]  
Gao F., Hannig J., Lee T.-Y., Torcaso F., Laplace transforms via Hadamard factorization with applications to small ball probabilities, Electronic J. Probability, 8, 13, (2003)
[7]  
Gao F., Hannig J., Lee T.-Y., Torcaso F., Exact L<sup>2</sup>-small balls of Gaussian processes, J. Theor. Probab.
[8]  
Gao F., Hannig J., Torcaso F., Integrated Brownian motions and exact L<sub>2</sub>-small balls, Ann. Prob., 31, pp. 1320-1337, (2003)
[9]  
Gradshteyn I.S., Ryzhik I.M., Tables of Integrals, Sums, Series, and Products [in Russian] (5th Ed.), (1971)
[10]  
Henze N., Nikitin Ya.Yu., A new approach to goodness-of-fit testing based on the integrated empirical process, J. Nonparam. Statist., 12, pp. 391-416, (2000)