Impermeability Through a Perforated Domain for the Incompressible two dimensional Euler Equations

被引:0
作者
Christophe Lacave
Nader Masmoudi
机构
[1] Univ Paris Diderot,CNRS
[2] Sorbonne Paris Cité,undefined
[3] Institut de Mathématiques de Jussieu-Paris Rive Gauche,undefined
[4] UMR 7586,undefined
[5] CNRS,undefined
[6] Sorbonne Universités,undefined
[7] Université Grenoble Alpes,undefined
[8] Courant Institute,undefined
来源
Archive for Rational Mechanics and Analysis | 2016年 / 221卷
关键词
Porous Medium; Vorticity; Euler Equation; Cutoff Function; Exterior Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the motion of an ideal incompressible fluid in a perforated domain. The porous medium is composed of inclusions of size ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} separated by distances dε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d_{\varepsilon}}$$\end{document} and the fluid fills the exterior. If the inclusions are distributed on the unit square, the asymptotic behavior depends on the limit of dεε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}\varepsilon}$$\end{document} when ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} goes to zero. If dεε→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}\varepsilon \to \infty}$$\end{document}, then the limit motion is not perturbed by the porous medium, namely, we recover the Euler solution in the whole space. If, on the contrary, dεε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}\varepsilon \to 0}$$\end{document}, then the fluid cannot penetrate the porous region, namely, the limit velocity verifies the Euler equations in the exterior of an impermeable square. If the inclusions are distributed on the unit segment then the behavior depends on the geometry of the inclusion: it is determined by the limit of dεε2+1γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}}}$$\end{document} where γ∈(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma \in (0,\infty]}$$\end{document} is related to the geometry of the lateral boundaries of the obstacles. If dεε2+1γ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}} \to \infty}$$\end{document}, then the presence of holes is not felt at the limit, whereas an impermeable wall appears if this limit is zero. Therefore, for a distribution in one direction, the critical distance depends on the shape of the inclusions; in particular, it is equal to ε3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon^{3}}$$\end{document} for balls.
引用
收藏
页码:1117 / 1160
页数:43
相关论文
共 37 条
[1]  
Allaire G.(1990)Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes Arch. Rational Mech. Anal. 113 209-259
[2]  
Allaire G.(1990)Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes Arch. Rational Mech. Anal. 113 261-298
[3]  
Allaire G.(1991)Homogenization of the Navier-Stokes equations with a slip boundary condition Comm. Pure Appl. Math. 44 605-641
[4]  
Bendali A.(2013)Mathematical justification of the Rayleigh conductivity model for perforated plates in acoustics SIAM J. Appl. Math. 73 438-459
[5]  
Fares M.(2015)Permeability through a perforated domain for the incompressible 2D Euler equations Ann. Inst. H. Poincaré Anal. Non Linéaire 32 159-182
[6]  
Piot E.(2009)Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary Asymptot. Anal. 62 41-88
[7]  
Tordeux S.(1987)Étude d’un fluide traversant une paroi perforée. I. Comportement limite près de la paroi J. Math. Pures Appl. (9) 66 1-43
[8]  
Bonnaillie-Noël V.(1987)Étude d’un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi J. Math. Pures Appl. (9) 66 45-70
[9]  
Lacave C.(2012)Asymptotic analysis of acoustic waves in a porous medium: initial layers in time Commun. Math. Sci. 10 239-265
[10]  
Masmoudi N.(2013)The Two-Dimensional Euler Equations on Singular Domains Arch. Ration. Mech. Anal. 209 131-170