Spectral Analysis for Dissipative Singular Sturm–Liouville Operators with Transmission Conditions

被引:0
作者
Kun Li
Jiong Sun
Xiaoling Hao
机构
[1] Inner Mongolia University,Mathematics Department
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2018年 / 42卷
关键词
Dissipative operators; Transmission conditions; Characteristic determinant; Completeness; 34L10; 34B24; 34L05;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we study a class of discontinuous dissipative differential operators in Weyl’s limit circle case. Using the characteristic determinant, we prove the completeness of the system of eigenvectors and associated vectors of this dissipative operator.
引用
收藏
页码:2207 / 2215
页数:8
相关论文
共 43 条
[1]  
Akdoǧan Z(2007)Green function of discontinuous boundary-value problem with transmission conditions Math Methods Appl Sci 30 1719-1738
[2]  
Demirci M(2016)Variational principles for spectral analysis of one Sturm–Liouville problem with transmission conditions Adv Differ Equ 76 1-14
[3]  
Mukhtarov OS(2013)Kreins theorems for a dissipative boundary value transmission problem Complex Anal Oper Theory 7 831-842
[4]  
Aydemir K(2011)The determinants of dissipative Sturm–Liouville operators with transmission conditions Math Comput Model 53 805-813
[5]  
Mukhtarov OS(2001)Dissipative operators generated by the Sturm–Liouville expression in the Weyl limit circle case J Math Anal Appl 254 178-190
[6]  
Bairamov E(1986)Limit-point and limit-circle criteria for Sturm–Liouville equations with intermittently negative principal coefficient Proc R Soc Edinburgh Sect A 103 215-228
[7]  
Uǧurlu E(1977)Parametrization of Titchmarshs Trans Am Math Soc 229 51-63
[8]  
Bairamov E(1995)-functions in the limit circle case J Math Anal Appl 194 39-49
[9]  
Uǧurlu E(1988)The determinants of perturbation connected with a dissipative Sturm–Liouville operators J Differ. Integral Equ. 1 423-432
[10]  
Bairamov E(1952)Singular self-adjoint Sturm–Liouville problems Izv Akad Nuak SSSR Ser Mat 16 293-324