Improved Moser–Trudinger inequality of Tintarev type in dimension n and the existence of its extremal functions

被引:0
作者
Van Hoang Nguyen
机构
[1] Duy Tan University,Institute of Research and Development
来源
Annals of Global Analysis and Geometry | 2018年 / 54卷
关键词
Improved Moser–Trudinger inequality; Blow-up analysis; Extremal functions; Elliptic regularity theory; 26D10; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be a smooth bounded domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^n$$\end{document} with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, W01,n(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,n}_0(\Omega )$$\end{document} be the usual Sobolev space on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and define λ1(Ω)=infu∈W01,n(Ω)\{0}∫Ω|∇u|ndx∫Ω|u|ndx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}$$\end{document}. Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type supu∈W01,n(Ω),∫Ω|∇u|ndx-α∫Ω|u|ndx≤1∫Ωexp(αn|u|nn-1)dx<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$\end{document}for any 0≤α<λ1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \alpha < \lambda _1(\Omega )$$\end{document}, where αn=nωn-11n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}$$\end{document} with ωn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{n-1}$$\end{document} being the surface area of the unit sphere in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^n$$\end{document}. This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any 0<α<λ1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \alpha < \lambda _{1}(\Omega )$$\end{document}. (The case α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document} corresponding to the Moser–Trudinger inequality is well known.)
引用
收藏
页码:237 / 256
页数:19
相关论文
共 60 条
[1]  
Adams DR(1988)A sharp inequality of J. Moser for higher order derivatives Ann. Math. 128 385-398
[2]  
Adimurthi A(2004)Blow-up analysis in dimension Commun. Partial Differ. Equ. 29 295-322
[3]  
Druet O(2003) and a sharp form of Trudinger-Moser inequality J. Funct. Anal. 204 35-49
[4]  
Balogh J(1986)Fundamental solution for the Bull. Sci. Math. 110 113-127
[5]  
Manfredi J(1988)Laplacian and sharp Moser–Trudinger inequality in Carnot groups J. Differ. Geom. 27 259-296
[6]  
Tyson J(2005)On the existence of an extremal function for an inequality of J. Moser Indiana Univ. Math. J. 54 669-705
[7]  
Carleson L(2001)Conformal deformation of metric on Indiana Univ. Math. J. 50 1567-1591
[8]  
Chang SYA(2015)Moser–Trudinger inequalities without boundary conditions and isoperimetric problems Calc. Var. Partial Differ. Equ. 54 2341-2366
[9]  
Chang SA(2016)Best constants for Moser–Trudinger inequalities on the Heisenberg group Commun. Partial Differ. Equ. 41 838-847
[10]  
Yang P(2002)Extremal functions for the singular Moser–Trudinger inequality in Commun. Pure Appl. Math. 55 135-152