Let Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document} be a smooth bounded domain in Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb R^n$$\end{document} with n≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\ge 2$$\end{document}, W01,n(Ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W^{1,n}_0(\Omega )$$\end{document} be the usual Sobolev space on Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document} and define λ1(Ω)=infu∈W01,n(Ω)\{0}∫Ω|∇u|ndx∫Ω|u|ndx\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}$$\end{document}. Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type supu∈W01,n(Ω),∫Ω|∇u|ndx-α∫Ω|u|ndx≤1∫Ωexp(αn|u|nn-1)dx<∞,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$\end{document}for any 0≤α<λ1(Ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0 \le \alpha < \lambda _1(\Omega )$$\end{document}, where αn=nωn-11n-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}$$\end{document} with ωn-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega _{n-1}$$\end{document} being the surface area of the unit sphere in Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb R^n$$\end{document}. This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any 0<α<λ1(Ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0< \alpha < \lambda _{1}(\Omega )$$\end{document}. (The case α=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha =0$$\end{document} corresponding to the Moser–Trudinger inequality is well known.)