The Importance of Boundary Conditions in Solving the Bound-State Bethe-Salpeter Equation

被引:0
|
作者
G. B. Mainland
机构
[1] Department of Physics,
[2] The Ohio State University at Newark,undefined
[3] 1179 University Drive,undefined
[4] Newark,undefined
[5] OH 43055-1797,undefined
[6] USA,undefined
来源
Few-Body Systems | 2003年 / 33卷
关键词
Boundary Condition; Basis Function; Ladder Approximation; Unequal Mass; Scalar Electrodynamic;
D O I
暂无
中图分类号
学科分类号
摘要
 The characteristic of bound-state, Bethe-Salpeter equations that makes them so difficult to solve numerically can be overcome, in some if not many cases, by expanding solutions in terms of basis functions that obey the boundary conditions that are satisfied by the solutions. The utility of such basis functions is demonstrated by calculating the zero-energy, bound-state solutions of a spin-0 boson and a spin-½ fermion with unequal masses. The constituents interact via scalar electrodynamics and are described by the Bethe-Salpeter equation in the ladder approximation. Although the Bethe-Salpeter equation that is solved is separable in the zero-energy limit, the feature that typically prevents solutions from being obtained numerically is still present. A technique for calculating boundary conditions, which is readily generalized to other Bethe-Salpeter equations, is discussed in detail.
引用
收藏
页码:71 / 88
页数:17
相关论文
共 11 条