Gabor windows supported on [ − 1, 1] and dual windows with small support

被引:0
作者
Ole Christensen
Hong Oh Kim
Rae Young Kim
机构
[1] Technical University of Denmark,Department of Mathematics
[2] KAIST,Department of Mathematical Sciences
[3] Yeungnam University,Department of Mathematics
来源
Advances in Computational Mathematics | 2012年 / 36卷
关键词
Gabor frame; Compactly supported window; Compactly supported dual window; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a continuous function g ∈ L2(ℝ) that is supported on [ − 1, 1] and generates a Gabor frame with translation parameter 1 and modulation parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<b< \frac{2N}{2N+1}$\end{document} for some N ∈ ℕ. Under an extra condition on the zeroset of the window g we show that there exists a continuous dual window supported on [ − N, N]. We also show that this result is optimal: indeed, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b>\frac{2N}{2N+1}$\end{document} then a dual window supported on [ − N, N] does not exist. In the limit case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b=\frac{2N}{2N+1}$\end{document} a dual window supported on [ − N, N] might exist, but cannot be continuous.
引用
收藏
页码:525 / 545
页数:20
相关论文
共 13 条
  • [1] Bölcskei H(2000)Gabor frames, unimodularity, and window decay J. Fourier Anal. Appl. 6 255-276
  • [2] Janssen AJEM(2006)Pairs of dual Gabor frames with compact support and desired frequency localization Appl. Comput. Harmon. Anal. 20 403-410
  • [3] Christensen O(2010)Gabor windows supported on [ − 1, 1] and compactly supported dual windows Appl. Comput. Harmon. Anal. 28 89-103
  • [4] Christensen O(2010)On dual Gabor frame pairs generated by polynomials J. Fourier Anal. Appl. 16 1-16
  • [5] Kim HO(2009)Gabor dual spline windows Appl. Comput. Harmon. Anal. 27 180-194
  • [6] Kim RY(1995)Frames and stable bases for shift-invariant subspaces of Can. J. Math. 47 1051-1094
  • [7] Christensen O(1997)(ℝ Duke Math. J. 89 237-282
  • [8] Kim RY(undefined)) undefined undefined undefined-undefined
  • [9] Laugesen RS(undefined)Weyl-Heisenberg frames and Riesz bases in undefined undefined undefined-undefined
  • [10] Ron A(undefined)(ℝ undefined undefined undefined-undefined