Gaussian spectral rules for second order finite-difference schemes

被引:0
作者
Vladimir Druskin
Leonid Knizhnerman
机构
[1] Schlumberger-Doll Research,
[2] Central Geophysical Expedition,undefined
来源
Numerical Algorithms | 2000年 / 25卷
关键词
finite differences; Padé–Chebyshev approximant; exponential superconvergence; elliptic and hyperbolic problems; Nyquist limit;
D O I
暂无
中图分类号
学科分类号
摘要
Earlier the authors suggested an algorithm of grid optimization for a second order finite-difference approximation of a two-point problem. The algorithm yields exponential superconvergence of the Neumann-to-Dirichlet map (or the boundary impedance). Here we extend that approach to PDEs with piecewise-constant coefficients and rectangular homogeneous subdomains. Examples of the numerical solution of the 2-dimensional oscillatory Helmholtz equation exhibit exponential convergence at prescribed points, where the cost per grid node is close to that of the standard five-point finite-difference scheme. Our scheme demonstrates high accuracy with slightly more than two grid points per wavelength and reduces the grid size by more than three orders as compared with the standard scheme.
引用
收藏
页码:139 / 159
页数:20
相关论文
共 50 条
[41]   Lagrangian finite-difference method for predicting green water loadings [J].
Basic, Josip ;
Degiuli, Nastia ;
Malenica, Sime ;
Ban, Dario .
OCEAN ENGINEERING, 2020, 209
[42]   A FINITE-DIFFERENCE ERROR ARISING FROM THE USE OF A STAGGERED GRID [J].
FLETCHER, DF ;
THYAGARAJA, A .
APPLIED MATHEMATICAL MODELLING, 1991, 15 (09) :496-498
[43]   Finite-difference implementation of semiasymptotic method for quasiperiodic impedance plane [J].
Borulko, VF .
5TH INTERNATIONAL CONFERENCE ON ANTENNA THEORY AND TECHNIQUES, PROCEEDINGS, 2005, :413-416
[44]   ACCURATE FINITE-DIFFERENCE APPROXIMATIONS FOR THE NEUMANN CONDITION ON A CURVED BOUNDARY [J].
NOYE, BJ ;
ARNOLD, RJ .
APPLIED MATHEMATICAL MODELLING, 1990, 14 (01) :2-13
[45]   ES Is More Than Just a Traditional Finite-Difference Approximator [J].
Lehman, Joel ;
Chen, Jay ;
Clune, Jeff ;
Stanley, Kenneth O. .
GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, :450-457
[46]   Performance prediction of finite-difference solvers for different computer architectures [J].
Louboutin, Mathias ;
Lange, Michael ;
Herrmann, Felix J. ;
Kukreja, Navjot ;
Gorman, Gerard .
COMPUTERS & GEOSCIENCES, 2017, 105 :148-157
[47]   Thermoelastic modeling of lithospheric uplift: a finite-difference numerical solution [J].
Hinojosa, JH ;
Mickus, KL .
COMPUTERS & GEOSCIENCES, 2002, 28 (02) :155-167
[48]   STABILITY OF FINITE DIFFERENCE SCHEMES FOR COMPLEX DIFFUSION PROCESSES [J].
Araujo, Aderito ;
Barbeiro, Silvia ;
Serranho, Pedro .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1284-1296
[50]   Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes [J].
Capuano, M. ;
Bogey, C. ;
Spelt, P. D. M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 361 :56-81