Gaussian spectral rules for second order finite-difference schemes

被引:0
作者
Vladimir Druskin
Leonid Knizhnerman
机构
[1] Schlumberger-Doll Research,
[2] Central Geophysical Expedition,undefined
来源
Numerical Algorithms | 2000年 / 25卷
关键词
finite differences; Padé–Chebyshev approximant; exponential superconvergence; elliptic and hyperbolic problems; Nyquist limit;
D O I
暂无
中图分类号
学科分类号
摘要
Earlier the authors suggested an algorithm of grid optimization for a second order finite-difference approximation of a two-point problem. The algorithm yields exponential superconvergence of the Neumann-to-Dirichlet map (or the boundary impedance). Here we extend that approach to PDEs with piecewise-constant coefficients and rectangular homogeneous subdomains. Examples of the numerical solution of the 2-dimensional oscillatory Helmholtz equation exhibit exponential convergence at prescribed points, where the cost per grid node is close to that of the standard five-point finite-difference scheme. Our scheme demonstrates high accuracy with slightly more than two grid points per wavelength and reduces the grid size by more than three orders as compared with the standard scheme.
引用
收藏
页码:139 / 159
页数:20
相关论文
共 50 条
[11]   Three-point finite-difference schemes, Pade and the spectral Galerkin method. I. One-sided impedance approximation [J].
Druskin, V ;
Moskow, S .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :995-1019
[12]   On stochastic finite difference schemes [J].
Gyöngy I. .
Stochastic Partial Differential Equations: Analysis and Computations, 2014, 2 (4) :539-583
[13]   On optimal finite-difference approximation of PML [J].
Asvadurov, S ;
Druskin, V ;
Guddati, MN ;
Knizhnerman, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :287-305
[14]   Higher-order finite difference schemes for the magnetic induction equations with resistivity [J].
Koley, U. ;
Mishra, S. ;
Risebro, N. H. ;
Svard, M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) :1173-1193
[15]   On a fourth-order finite-difference method for singularly perturbed boundary value problems [J].
Herceg, Dragoslav ;
Herceg, Djordje .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) :828-837
[16]   Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes [J].
Lisitsa, Vadim ;
Tcheverda, Vladimir ;
Vishnevsky, Dmitry .
COMPUTATIONAL GEOSCIENCES, 2012, 16 (04) :1135-1152
[17]   Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes [J].
Vadim Lisitsa ;
Vladimir Tcheverda ;
Dmitry Vishnevsky .
Computational Geosciences, 2012, 16 :1135-1152
[18]   An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for compressible flows [J].
Fernandez-Fidalgo, Javier ;
Nogueira, Xesus ;
Ramirez, Luis ;
Colominas, Ignasi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 335 :91-127
[19]   Finite-difference solutions for the blow moulding of polymers [J].
Bradean, R ;
Ingham, DB ;
Heggs, PJ .
1997 JUBILEE RESEARCH EVENT, VOLS 1 AND 2, 1997, :281-284
[20]   High-order finite-difference implementation of the immersed-boundary technique for incompressible flows [J].
Bonfigli, Giuseppe .
COMPUTERS & FLUIDS, 2011, 46 (01) :2-11