Gradient estimates for multi-phase problems

被引:0
|
作者
Sumiya Baasandorj
Sun-Sig Byun
Jehan Oh
机构
[1] Seoul National University,Department of Mathematical Sciences
[2] Seoul National University,Department of Mathematical Sciences and Research Institute of Mathematics
[3] Kyungpook National University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
Primary 35J70; Secondary 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove optimal gradient estimates for distributional solutions to non-uniformly elliptic equations of multi-phase type in divergence form by investigating sharp conditions on such nonlinear operators for the Calderón-Zygmund theory.
引用
收藏
相关论文
共 50 条
  • [1] Gradient estimates for multi-phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Oh, Jehan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [2] Gradient Estimates for Multi-Phase Problems in Campanato Spaces
    Fang, Yuzhou
    Radulescu, Vicentiu D.
    Zhang, Chao
    Zhang, Xia
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (03) : 1079 - 1099
  • [3] Optimal gradient estimates for multi-phase integrals
    De Filippis, Cristiana
    MATHEMATICS IN ENGINEERING, 2022, 4 (05): : 1 - 36
  • [4] Campanato Type Estimates for the Multi-phase Problems with Irregular ObstaclesCampanato Type Estimates for the Multi-phase ProblemsB. Ge and B. Zhang
    Bin Ge
    Beilei Zhang
    Mediterranean Journal of Mathematics, 2025, 22 (3)
  • [5] Symmetry in Multi-Phase Overdetermined Problems
    Babaoglu, Ceni
    Shahgholian, Henrik
    JOURNAL OF CONVEX ANALYSIS, 2011, 18 (04) : 1013 - 1024
  • [6] Regularity for multi-phase variational problems
    De Filippis, Cristiana
    Oh, Jehan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) : 1631 - 1670
  • [7] Gradient estimates for double phase problems with irregular obstacles
    Byun, Sun-Sig
    Cho, Yumi
    Oh, Jehan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 169 - 185
  • [8] Gradient estimates for the double phase problems in the whole space
    Zhang, Bei-Lei
    Ge, Bin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (12): : 7349 - 7364
  • [9] Gradient estimates for Orlicz double-phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (04) : 2215 - 2268
  • [10] A Multi-Phase Method for Euclidean Traveling Salesman Problems
    Hugo Pacheco-Valencia, Victor
    Vakhania, Nodari
    Angel Hernandez-Mira, Frank
    Alberto Hernandez-Aguilar, Jose
    AXIOMS, 2022, 11 (09)