Superconformal algebras for twisted connected sums and G2 mirror symmetry

被引:0
作者
Marc-Antoine Fiset
机构
[1] University of Oxford,Mathematical Institute
来源
Journal of High Energy Physics | / 2018卷
关键词
Conformal Field Models in String Theory; Conformal and W Symmetry; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We realise the Shatashvili-Vafa superconformal algebra for G2 string compactifications by combining Odake and free conformal algebras following closely the recent mathematical construction of twisted connected sum G2 holonomy manifolds. By considering automorphisms of this realisation, we identify stringy analogues of two mirror maps proposed by Braun and Del Zotto for these manifolds.
引用
收藏
相关论文
共 20 条
[1]  
Kovalev A(2003)Twisted connected sums and special Riemannian holonomy J. Reine Angew. Math. 565 125-undefined
[2]  
Corti A(2013)Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds Geom. Topol. 17 1955-undefined
[3]  
Haskins M(2015)The landscape of M-theory compactifications on seven-manifolds with G JHEP 04 047-undefined
[4]  
Nordström J(2017) holonomy JHEP 10 083-undefined
[5]  
Pacini T(1995)Tops as building blocks for G Selecta Math. 1 347-undefined
[6]  
Halverson J(1993) manifolds Phys. Rept. 223 183-undefined
[7]  
Morrison DR(1993)Superstrings and manifold of exceptional holonomy Commun. Math. Phys. 151 467-undefined
[8]  
Braun AP(1995)W symmetry in conformal field theory J. Geom. Phys. 15 189-undefined
[9]  
Shatashvili SL(2018)Holonomy groups and W symmetries Fortsch. Phys. 66 1800027-undefined
[10]  
Vafa C(2015)On orbifolds with discrete torsion Fields Inst. Monogr. 34 211-undefined