Wavelet-based nonparametric estimator of the variance function

被引:0
作者
Pan, Zuohong
Wang, Xiaodi
机构
[1] WesternConnecticut State University,Department of Social Sciences, Department of Mathematics
[2] WesternConnecticut State University,Department of Social Sciences, Department of Mathematics
关键词
wavelet shrinkage; nonlinear regression;
D O I
10.1023/A:1008695011608
中图分类号
学科分类号
摘要
A new wavelet-based nonparametric estimator is introduced in an effort toapproximate variance functions. The new estimator possesses some superiorqualities that are illustrated through its actual performance in somesimulations.
引用
收藏
页码:79 / 87
页数:8
相关论文
共 29 条
[1]  
Carroll R.J.(1982)Adapting for heteroscedasticity in linear models Annals of Statistics 10 1224-1233
[2]  
Donoho D.L.(1994)Ideal spatial adaptation via wavelet shrinkage Biometrika 81 425-455
[3]  
Johnstone I.M.(1982)Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation Econometrica 50 987-1008
[4]  
Engle R.F.(1985)Kernels for nonparametric curve estimation Journal of the Royal Statistical Society, B 47 238-252
[5]  
Gasser T.(1986)Residual variance and residual pattern in nonlinear regression Biometrika 73 625-633
[6]  
Muller H.G.(1981)On trigonometric series estimates of densities The Annals of Statistics 9 683-685
[7]  
Mammitzsch V.(1990)On variance estimation in nonparametric regression Biometrika 77 415-419
[8]  
Gasser T.(1990)Asymptotically optimal difference-based estimation of variance in nonparametric regression Biometrika 77 521-528
[9]  
Sroka L.(1996)Progress in data-based bandwidth selection for kernel density estimation Computational Statistics 11 337-381
[10]  
Jennen-Steinmetz C.(1987)Heteroscedasticity in regression The Annals of Statistics 15 610-625